СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОВОЛОКОН Российский патент 2009 года по МПК C01B31/02 B82B3/00 

Описание патента на изобретение RU2350555C2

Изобретение относится к технологии производства углеродных нановолокон, которые используются для производства сорбентов и носителей катализаторов, катализаторов, ферромагнитных чернил, графитовых пигментов для копирования. Также они могут применяться как наполнители углеродных и полимерных композитов, восстановитель при выплавке сталей и в порошковой металлургии.

Известен способ получения углеродных нановолокон [Robertson S.D. Carbon formation from pyrolysis over some transition metal surfaces. Nature and properties of the cerbou forwed. 1970, v.3, p.365-374] пропускание метана над массивным катализатором [Fe, Co, Ni] при температуре 650-720°С и атмосферном давлении. Его недостатками являются относительно невысокий общий выход углерода, быстрая дезактивация катализатора, низкая производительность.

Наиболее близким к заявляемому является следующий [заявка Японии 2001048512 А С01В 31/02, С23С 16/26, 16/511, 2001 г.]. Согласно ему процесс проводят при 500-750°С, используя в качестве сырья газовые смеси ацетилена с водородом. Содержание ацетилена в газовой смеси 10-50 об.%.

Недостатком указанного метода являются необходимость приготовления газовой смеси, высокие температуры процесса и не достаточно высокий выход целевого продукта (90-95 мас.%).

Техническим результатом изобретения является повышение производительности процесса (отказ от стадии смешения водорода с ацетиленом, снижение температуры и повышение скорости образования углерода) и повышение выхода целевого продукта.

Данный технический результат достигается тем, что в реактор загружают катализатор на основе карбидообразующих металлов VIII группы, продувают реактор инертным газом и разогревают до 250-300°С. После достижения заданной температуры, в реактор начинают подавать с объемной скоростью 1400-1700 час-1 газ электрокрекинга. Углеродные нановолокна образуются при термокаталитическом разложении газа электрокрекинга. Газ электрокрекинга образуется при разложении углеводородов в электрических разрядах и имеет состав, об.%: водород - 55-65, ацетилен - 15-30, алканы C1-C4 - 3-7, алкены С24 - 8-12 [Песин О.Ю. Исследование разложения органических продуктов в расплавленных средах и электрических разрядах и разработка на их основе процессов получения низших олефинов и ацетилена: Дис.... докт. техн. наук. - М.: МИТХТ, 1980. 535 с.]. Для получения газа электрокрекинга можно использовать отходы химических и нефтехимических производств

Примеры, иллюстрирующие изобретение

Пример 1

В реактор загружают ˜2 г катализатора на основе железа, продувают реактор инертным газом, нагревают до 250°С и подают с объемной скоростью 1400 час-1 газ, образовавшийся при электрокрекинге дизельной фракции нефти состава, об.%: водород - 58, ацетилен - 23, алканы C1-C4 - 7, алкены С24 - 12.

Скорость образования углерода в этих условия составляет 3.23 мг/мин на 1 г катализатора, при этом доля УНВ в образовавшемся продукте - 99.1 мас.%.

Пример 2

В реактор загружают ˜2 г катализатора на основе никеля, продувают реактор инертным газом, нагревают до 300°С и начинают подавать с объемной скоростью 1700 час-1 газ, образовавшийся при электрокрекинге отработанных индустриальных минеральных масел состава, об.%: водород - 61, ацетилен - 27, алканы C1-C4 - 4, алкены С24 - 8.

Скорость образования углерода в этих условия составляет 4.44 мг/мин на 1 г катализатора, а доля УНВ в образовавшемся продукте - 98.5 мас.%.

Пример 3

В реактор загружают ˜2 г катализатора на основе кобальта, продувают реактор инертным газом, нагревают до 300°С и начинают подавать с объемной скоростью 1700 час-1 газ, образовавшийся при электрокрекинге бензиновой фракции нефти состава, об.%: водород - 55, ацетилен - 29, алканы C1-C4 - 4, алкены С24 - 12.

Скорость образования углерода в этих условия составляет 4.21 мг/мин на 1 г катализатора, а доля УНВ в образовавшемся продукте - 98.9 мас.%.

Пример 4

В реактор загружают ˜2 г катализатора на основе железа, продувают реактор инертным газом, нагревают до 200°С и подают с объемной скоростью 1400 час-1 газ, образовавшийся при электрокрекинге дизельной фракции нефти состава, об.%: водород - 59, ацетилен - 24, алканы C1-C4 - 6, алкены С24 - 11.

Образования углерода не установлено.

Пример 11

В реактор загружают ˜2 г катализатора на основе железа, продувают реактор инертным газом, нагревают до 350°С и подают с объемной скоростью 1400 час-1 газ по прототипу.

Образования углерода не установлено.

Эксперименты 5-10 выполнены на катализаторе на основе железа. Условия синтеза углеродных нановолокон и выходные показатели процесса представлены в таблице.

Из сопоставительного анализа таблицы видно, что использование газа электрокрекинга жидких углеводородов позволяет в 2-2.5 раза снизить температуру синтеза углеродных нановолокон, в 3-4.5 раза увеличить производительность процесса и в 3.5-5.5 раз снизить выход побочных продуктов. При этом для получения углеродных нановолокон может использоваться газ, образующийся при электрокрекинге отходов химических и нефтехимических производств, что позволяет более рационально использовать ценное органическое сырье и решать экологические проблемы.

Условия синтеза углеродных нановолокон и выходные показатели процессаПример, №Условия синтезаСкорость образования углерода, мг/мин на 1 г катализатораСодержание углеродных нановолокон в продукте, %Используемый газРасход газа, час-1Температура синтеза, °С1Газ электрокрекинга дизельной фракции нефти14002503.2399.12Газ электрокрекинга отработанных индустриальных минеральных масел17003004.4498.53Газ электрокрекинга бензиновой фракции нефти17003004.2198.94Газ электрокрекинга дизельной фракции нефти1400200Образования углерода не установлено5Газ электрокрекинга дизельной фракции нефти9002502.1199.26Газ электрокрекинга дизельной фракции нефти20003005.0686.37Газ электрокрекинга дизельной фракции нефти17003504.6190.08Газ электрокрекинга дизельной фракции нефти, обогащенный водородом15003000.9699.79Газ электрокрекинга дизельной фракции нефти, обогащенный ацетиленом16002508.1174.210Газ по прототипу16007509.5219.311Газ по прототипу14003500.9892.3 д

Похожие патенты RU2350555C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ВОЛОКОН В ЭЛЕКТРИЧЕСКОМ ОДНОРОДНОМ ПОЛЕ 2011
  • Антипов Александр Анатольевич
  • Аракелян Сергей Мартиросович
  • Кутровская Стелла Владимировна
  • Кучерик Алексей Олегович
  • Осипов Антон Владиславович
RU2478562C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НОСИТЕЛЯ ДЛЯ КАТАЛИЗАТОРОВ 2007
  • Пешнев Борис Владимирович
  • Николаев Александр Игоревич
  • Федорова Виктория Витальевна
RU2348456C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДЛИННЫХ ОРИЕНТИРОВАННЫХ ЖГУТОВ УГЛЕРОДНЫХ НАНОВОЛОКОН 2009
  • Мордкович Владимир Зальманович
  • Караева Аида Разимовна
  • Заглядова Светлана Вячеславовна
  • Маслов Игорь Александрович
  • Дон Алексей Константинович
RU2393276C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОВОЛОКОН 2010
  • Стрельцов Иван Анатольевич
  • Бауман Юрий Иванович
  • Мишаков Илья Владимирович
  • Ведягин Алексей Анатольевич
  • Буянов Роман Алексеевич
RU2456234C2
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОВОЛОКОН И/ИЛИ УГЛЕРОДНЫХ НАНОТРУБОК 2010
  • Хукстра Й.
  • Гёс Йохн Вилхелм
  • Еннескенс Л.В.
RU2538584C2
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОВОЛОКОН 2005
  • Пешнев Борис Владимирович
  • Николаев Александр Игоревич
RU2301821C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ АЛКАНО-ОЛЕФИНОВЫХ УГЛЕВОДОРОДОВ В ЕГО ПРИСУТСТВИИ 2008
  • Цодиков Марк Вениаминович
  • Чистяков Андрей Валерьевич
  • Яндиева Фатима Алихановна
  • Кугель Владимир Яковлевич
  • Бухтенко Ольга Владимировна
  • Жданова Татьяна Николаевна
  • Гехман Александр Ефимович
  • Моисеев Илья Иосифович
  • Дробот Дмитрий Васильевич
  • Петракова Ольга Викторовна
RU2391133C1
КАТАЛИЗАТОР СИНТЕЗА УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Мордкович Владимир Зальманович
  • Караева Аида Разимовна
  • Заглядова Светлана Вячеславовна
  • Михайлова Янина Владиславовна
  • Свидерский Сергей Александрович
  • Синева Лилия Вадимовна
  • Ермолаев Вадим Сергеевич
  • Соломоник Игорь Григорьевич
RU2422200C1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ УГЛЕРОДНОГО МАТЕРИАЛА С НАНОСТРУКТУРИРОВАННЫМ УГЛЕРОДОМ С ИСПОЛЬЗОВАНИЕМ ВЗРЫВА 2009
  • Низовцев Владимир Евгеньевич
RU2408531C2
Способ получения нанокомпозиционного материала на основе меди, упрочненного углеродными нановолокнами 2018
  • Толочко Олег Викторович
  • Кольцова Татьяна Сергеевна
  • Ларионова Татьяна Васильевна
  • Бобрынина Елизавета Викторовна
RU2696113C1

Реферат патента 2009 года СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОВОЛОКОН

Изобретение может быть использовано для производства сорбентов, носителей катализаторов, ферромагнитных чернил, графитовых пигментов для копирования, наполнителей углеродных и полимерных композитов, восстановителей при выплавке сталей и в порошковой металлургии. Газ, образующийся при электрокрекинге жидких углеводородов, содержащий ацетилен и водород, с расходом 1400-1700 час-1, подвергают термокаталитическому разложению при 250-300°С на катализаторе на основе карбидообразующих металлов VIII группы. Изобретение позволяет повысить производительность процесса, снизить температуру и увеличить скорость образования углерода, повысить выход целевого продукта, 1 табл.

Формула изобретения RU 2 350 555 C2

Способ получения углеродных нановолокон термокаталитическим разложением газа, содержащего ацетилен и водород, на катализаторе на основе карбидообразующих металлов VIII группы, отличающийся тем, что в качестве газа, содержащего ацетилен и водород, используют газ, образующийся при электрокрекинге жидких углеводородов, с расходом 1400-1700 ч-1, и термокаталитическое разложение проводят при температуре 250-300°С.

Документы, цитированные в отчете о поиске Патент 2009 года RU2350555C2

Перекатываемый затвор для водоемов 1922
  • Гебель В.Г.
SU2001A1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО МАТЕРИАЛА И ВОДОРОДА 1994
  • Чесноков В.В.
  • Буянов Р.А.
  • Молчанов В.В.
  • Кувшинов Г.Г.
  • Могильных Ю.И.
RU2086502C1
СПОСОБ ПОЛУЧЕНИЯ КОАКСИАЛЬНЫХ УГЛЕРОДНЫХ НАНОТРУБОК 1996
  • Галикеев А.Р.
  • Галямов Э.З.
RU2108966C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК 1998
  • Авдеева Л.Б.
  • Лихолобов В.А.
RU2146648C1
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА И УГЛЕРОДНОГО МАТЕРИАЛА 1999
  • Белый А.С.
  • Дуплякин В.К.
  • Лихолобов В.А.
  • Авдеева Л.Б.
  • Оружейников А.И.
RU2160698C1
US 6759025 B2, 06.07.2004
US 7157068 B2, 02.01.2007
Прибор, замыкающий сигнальную цепь при повышении температуры 1918
  • Давыдов Р.И.
SU99A1

RU 2 350 555 C2

Авторы

Пешнев Борис Владимирович

Николаев Александр Игоревич

Варигина Юлия Александровна

Исмаил Али Сами

Даты

2009-03-27Публикация

2007-04-26Подача