ОГНЕУПОРНАЯ МАССА И СПОСОБ ПОЛУЧЕНИЯ ОГНЕУПОРНОЙ МАССЫ Российский патент 2009 года по МПК C04B35/66 C04B35/103 

Описание патента на изобретение RU2365562C2

Изобретения относятся к огнеупорной промышленности, а именно к производству огнеупоров, устойчивых к воздействию стали, чугуна, шлаков и цветных металлов.

Известна шихта для изготовления огнеупорного материала, содержащая, вес.%: графит 50÷62, карбид кремния 20÷30, кремний 3÷8, связующее 1÷5, окись хрома 5÷17, глина или каолин 8÷16 [1].

Основным недостатком указанного аналога является низкая прочность при эксплуатации полученного из этой шихты огнеупора, обусловленная выгоранием графита при высоких температурах. Помимо этого, недостатком указанной шихты является необходимый при получении огнеупора обжиг, увеличивающий стоимость получения материала.

Известен способ получения шихты для изготовления огнеупорного материала, в котором все компоненты шихты смешивают в шаровой мельнице, а затем вводят связующее в бегунах [1].

Недостатками указанного способа являются: низкая прочность при эксплуатации, связанная с неравномерным распределением связующего по поверхности компонентов шихты.

Наиболее близкой по технической сущности и достигаемому эффекту к предлагаемой является огнеупорная масса, содержащая: графит 19,35÷22,32 мас.%, фосфатное связующее 6,57÷10,46 мас.%, пластификатор 6,18÷7,4 мас.%, наполнитель 11,75÷16,37 мас.%, зернистый заполнитель 47÷53 мас.% [2]. В качестве зернистого заполнителя масса содержит электрокорунд или шамот. В качестве связующего используют триполифосфат натрия, алюмохромфосфатная связка или ортофосфорная кислота.

Основным недостатком наиболее близкого аналога, так же как и аналога, указанного ранее, является низкая прочность.

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому является способ получения огнеупорной массы, в котором загружают в смеситель графит, добавляют фосфатное связующее, перемешивают в течение 2÷3 минут, затем добавляют пластификатор и наполнитель и перемешивают в течение 3÷4 минут. После чего добавляют зернистый заполнитель и перемешивают в течение 15÷30 минут [2].

В процессе эксплуатации огнеупоров из полученных данным способом огнеупорных масс при высоких температурах происходит выгорание графита, в результате чего изменяется структура огнеупора, он становится менее плотным, что ведет к понижению прочности, снижению сроков службы.

Таким образом, основным недостатком наиболее близкого способа является низкая прочность.

Решаемая изобретениями задача - повышение прочности огнеупоров.

Поставленная задача в предлагаемом первом изобретении достигается тем, что огнеупорная масса, содержащая графит, фосфатное связующее, пластификатор, мелкозернистый огнеупорный порошковый наполнитель, порошковый заполнитель зернистостью 6÷0,5 мм, согласно изобретению дополнительно содержит органические волокна диаметром 10÷60 мкм, длиной 0,5÷1 мм, отход производства углеродистого передельного феррохрома, при следующем соотношении компонентов, мас.%:

графит 5÷8

фосфатное связующее 4÷6

пластификатор 5÷10

мелкозернистый огнеупорный порошковый наполнитель 4÷25

органические волокна 0,05÷0,15

отход производства углеродистого передельного феррохрома 2÷6

порошковый заполнитель зернистостью 6÷0,5 мм - остальное.

Поставленная задача в предлагаемом втором изобретении достигается тем, что в способе получения огнеупорной массы, в котором вначале приготавливают смесь из графита и фосфатного связующего, а затем вводят мелкозернистый огнеупорный порошковый наполнитель и порошковый заполнитель зернистостью 6÷0,5 мм с последующим перемешиванием, согласно изобретению вначале графит смешивают с 1/3÷1/2 фосфатного связующего и выдерживают после перемешивания 2÷4 часа; при этом отдельно готовят смесь мелкозернистого огнеупорного порошкового наполнителя и отхода производства углеродистого передельного феррохрома, а также смесь порошкового заполнителя, органического волокна и остатка связующего, после чего полученные ранее смеси перемешивают.

Предварительная выдержка смеси графита с фосфатным связующим ведет к появлению на графите защитной пленки, которая в дальнейшем упрочняется введением в смесь отходов передельного углеродистого феррохрома, содержащих оксиды MgO и СаО. Дисперсность отходов и наличие органических волокон на зернах порошкового заполнителя зернистостью 6÷0,5 мм способствует образованию плотной структуры огнеупора, препятствующей проникновению окислителя к графиту, выгоранию углерода, и следовательно, повышают прочность огнеупора.

Отход производства углеродистого передельного феррохрома, добавленный в мелкозернистый огнеупорный порошковый наполнитель, позволяет увеличить удельную поверхность, так как его частицы имеют размер менее 10 мкм. Увеличение удельной поверхности тонкомолотой части позволяет распределить ее более тонким слоем на зернах заполнителя и тем самым увеличить прочность связи в массе и в готовом изделии. Количество отхода производства углеродистого передельного феррохрома в массе более 6% приводит к появлению мелких трещин при прессовании готового изделия, менее 2% - не обеспечивает эффекта повышения прочности при высоких температурах.

Химический состав отходов производства углеродистого передельного феррохрома определяется технологией получения ферросплава и практически одинаков для всех ферросплавных заводов. Эти отходы содержат, мас.%: СаО - 1,6÷1,9; SiQ2 - 92÷93; Сr2О3 - 0,05÷0,15; MgO - 0,8÷1,0; Аl2О3 - 0,6÷0,8; С - остальное.

В качестве фосфатного связующего могут быть использованы фосфорная кислота, алюмохромфосфатное, алюмоборфосфатное, алюмофосфатное и др. связующие.

Входящие в состав органические волокна притягиваются к поверхности порошкового заполнителя зернистостью 6÷0,5 мм за счет электростатических сил, тем самым уменьшается энергия отталкивания между противоположно заряженными участками поверхности порошкового заполнителя зернистостью 6÷0,5 мм и мелкозернистого огнеупорного порошкового наполнителя, увеличивается прочность контактов компонентов смеси, а следовательно, и прочность всего огнеупорного изделия. При длине волокна менее 0,5 мм, так же как и при диаметре волокна меньше 10 мкм и количестве органических волокон в массе менее 0,05 мас.% не достигается эффекта увеличения прочности.

При длине волокна более 1 мм, диаметре его более 60 мкм и количестве более 0,15% происходит увеличение пористости, а следовательно, снижение прочности.

В предлагаемом решении круг используемых органических волокон, выполняющих роль армирующего звена, неограничен. Это могут быть любые органические волокна заявляемых размеров (хлопок, целлюлоза, полиамидные и др.).

Предварительное нанесение 1/3÷1/2 фосфатного связующего на графит с последующим перемешиванием и выдержкой в течение 2-4 часов обеспечивает равномерное распределение пленки фосфатов на поверхности частиц графита, что препятствует выгоранию углерода и увеличивает прочность изделия. При выдержке менее 2 часов формируется недостаточно прочное покрытие на графите, которое может быть нарушено при последующем перемешивании с порошковым заполнителем зернистостью 6÷0,5 мм. Выдержка более 4-х часов экономически нецелесообразна, т.к. дальнейшее увеличение времени выдержки не оказывает влияния на прочность огнеупора. Количество связующего менее 1/3 недостаточно для образования пленки на всех частицах графита. При увеличении связующего более 1/2 части образуется толстая пленка на частицах графита, которая легко разрушается при дальнейшем перемешивании, что приводит к снижению прочности изделий.

Согласно предлагаемым решениям на ОАО «Челябинский абразивный завод» были приготовлены огнеупорные массы, из которых изготовили огнеупорные кирпичи и подвергли их испытаниям на прочность.

В качестве мелкозернистого огнеупорного порошкового наполнителя были использованы белый электрокорунд и шамот зернистостью менее 63 мкм. В качестве порошкового заполнителя зернистостью 6÷0,5 мм были использованы белый электрокорунд, карбид кремния, шамот.

В качестве фосфатного связующего использовано алюмохромфосфатное связующее по ТУ 6-18-166-83.

Отходы производства углеродистого передельного феррохрома взяты с ОАО «ЧЭМК» и содержали, мас.%: СаО - 1,7; SiO2 - 92,6; Сr2О3 - 0,1; MgO - 0,9; Аl2O3 - 0,7; С - остальное, с дисперсностью менее 10 мкм.

В таблице приведены составы предлагаемой и известных масс, способ приготовления и значения предела прочности при сжатии.

Как видно из данных таблицы, прочность изделий, изготовленных из огнеупорной массы предлагаемого состава по предлагаемому способу, выше в 1,63-4,33 раза, чем известного.

Предлагаемая масса и способ ее получения найдут применение в черной и цветной металлургии, химической и цементной промышленности.

Источники информации

1. Авт. свид. СССР №565902. Шихта для изготовления огнеупорного материала. М. Кл.2 С04В 35/10, от 25.07.77.

2. Авт.свид. СССР №1701678. Способ приготовления огнеупорной массы. М. Кл. С04В 35/10, от 30.12.91.

Таблица Исходные материалы и показатели Состав мас. % Прототип Запредельные составы 1 2 3 4 5 6 7 8 9 10 11 12 13 Графит 5 5 5 5 5 5 5 5 5 6,5 8 4 9 19,35-22,32 Фосфатные связующие 4 4 4 4 4 4 4 4 4 5 6 3 7 6,57-10,46 Пластификатор 5 5 5 5 5 5 5 5 5 7,5 10 4 11 6,18-7,4 Мелкозернистый огнеупорный порошковый наполнитель 4 4 4 4 4 4 4 4 4 14,5 25 26 3 11,75-16,37 Органические волокна: длина 0,5 мм, диаметр 10 мкм 0,05 0,1 0,15 - - - - - - - - 0,04 0,16 - длина 0,75 мм, диаметр 30 мкм - - - 0,05 0,1 0,15 - - - 0,1 0,1 - - - длина 1,0 мм, диаметр 60 мкм - - - - - - 0,05 0,1 0,15 - - - - - Отходы производства углеродистого передельного феррохрома 2 2 2 2 2 2 2 2 2 4 6 1 7 - Заполнитель зернистостью 6 - 0,5 мм 79,95 79,9 79,85 79,95 79,9 79,85 79,95 79,9 79,85 62,4 44,9 61,96 62,84 47-53 Количество фосфатного связующего на графите, части 1/2=2% 1/2=2% 1/2=2% 1/2=2% 1/2=2% 1/2=2% 1/2=2% 1/2=2% 1/2=2% 1/3=1,67% 5/12=2,5% 1/4=0,75% 2/3=4,67% 1 Время выдержки графита с фосфатным связующим после перемешивания, час 3 3 3 3 3 3 3 3 3 2 4 1 5 0 Предел прочности при сжатии, МПа 80,0 80,5 81,6 81,9 81,5 81,9 81,7 82,0 82,4 80,5 53,8 38,1 36,4 19-33

Похожие патенты RU2365562C2

название год авторы номер документа
ТЕПЛОИЗОЛИРУЮЩИЙ И ТЕПЛОПРОВОДНЫЙ БЕТОНЫ НА АЛЮМОФОСФАТНОЙ СВЯЗКЕ (ВАРИАНТЫ) 2011
  • Алферьев Сергей Дмитриевич
  • Поляков Валерий Анатольевич
RU2483038C2
Способ получения огнеупорного углеродсодержащего материала 2021
  • Фоменко Сергей Михайлович
  • Акишев Адиль
  • Толендиулы Санат
  • Абдулкаримова Роза Габдуловна
  • Алмагамбетов Марал Сарсенбаевич
RU2776253C1
УГЛЕРОДСОДЕРЖАЩАЯ МАССА 2007
  • Суворов Станислав Алексеевич
  • Мусевич Владимир Анатольевич
RU2352541C2
СОСТАВ И СПОСОБ ОБРАЗОВАНИЯ МАССЫ КАРБОНИРОВАННЫХ ОГНЕУПОРОВ 2004
  • Суворов С.А.
  • Коптелов В.Н.
  • Шатилов О.Ф.
  • Одегов С.Ю.
  • Плюхин П.В.
RU2245863C1
СОСТАВ МАССЫ ДЛЯ УГЛЕРОДСОДЕРЖАЩИХ ОГНЕУПОРОВ И СПОСОБ ИЗГОТОВЛЕНИЯ УГЛЕРОДСОДЕРЖАЩИХ ОГНЕУПОРОВ 2012
  • Аксельрод Лев Моисеевич
  • Ярушина Татьяна Викторовна
  • Турчин Максим Юрьевич
  • Шаров Максим Борисович
RU2489402C1
СПОСОБ ПРИГОТОВЛЕНИЯ ОГНЕУПОРНОЙ МАССЫ 1998
  • Можжерин В.А.
  • Сакулин В.Я.
  • Мигаль В.П.
  • Новиков А.Н.
  • Салагина Г.Н.
  • Штерн Е.А.
  • Скурихин В.В.
  • Гершкович С.И.
RU2151125C1
СПОСОБ ИЗГОТОВЛЕНИЯ УГЛЕРОДСОДЕРЖАЩИХ ОГНЕУПОРОВ И СОСТАВ МАССЫ ДЛЯ УГЛЕРОДСОДЕРЖАЩИХ ОГНЕУПОРОВ 2011
  • Коростелёв Сергей Павлович
  • Дунаев Владимир Валериевич
  • Сырескин Сергей Николаевич
  • Реан Ашот Александрович
  • Одегов Сергей Юрьевич
  • Аксельрод Лев Моисеевич
  • Таратухин Григорий Владимирович
  • Ненашев Евгений Николаевич
  • Ярушина Татьяна Викторовна
  • Шаров Максим Борисович
RU2490229C2
ОГНЕУПОРНАЯ ТОРКРЕТ-МАССА 2010
  • Коростелёв Сергей Павлович
  • Дунаев Владимир Валериевич
  • Сырескин Сергей Николаевич
  • Реан Ашот Александрович
  • Одегов Сергей Юрьевич
  • Аксельрод Лев Моисеевич
  • Таратухин Григорий Владимирович
  • Ненашев Евгений Николаевич
  • Поспелова Елена Ивановна
  • Илянкин Алексей Викторович
RU2424213C1
МАССА ДЛЯ ИЗГОТОВЛЕНИЯ ОГНЕУПОРНЫХ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ 2007
  • Айзикович Олег Марианович
  • Василевицкий Яков Моисеевич
  • Дерягин Валерий Борисович
  • Сапелкин Валерий Сергеевич
  • Фролов Вениамин Петрович
RU2365561C1
СОСТАВ И СПОСОБ ОБРАЗОВАНИЯ МАССЫ КАРБОНИРОВАННЫХ ОГНЕУПОРОВ 2000
  • Суворов С.А.
  • Бочаров С.В.
  • Алексеева Н.В.
  • Можжерин А.В.
  • Сакулин А.В.
  • Новиков А.Н.
  • Салагина Г.Н.
  • Штерн Е.А.
RU2171243C1

Реферат патента 2009 года ОГНЕУПОРНАЯ МАССА И СПОСОБ ПОЛУЧЕНИЯ ОГНЕУПОРНОЙ МАССЫ

Изобретения относятся к огнеупорной промышленности, а именно к производству огнеупоров, устойчивых к воздействию стали, чугуна, шлаков и цветных металлов. Огнеупорная масса содержит, мас.%: графит 5÷8; фосфатное связующее 4÷6; пластификатор 5÷10; мелкозернистый огнеупорный порошковый наполнитель из группы: белый электрокорунд, шамот зернистостью менее 63 мкм 4÷25; органические волокна 0,05÷0,15; отходы производства углеродистого передельного феррохрома 2÷6; порошковый заполнитель из группы: белый электрокорунд, карбид кремния или шамот зернистостью 6÷0,5 мм - остальное. В способе получения огнеупорной массы вначале графит смешивают с 1/3÷1/2 фосфатного связующего и выдерживают после перемешивания 2÷4 часа, при этом отдельно готовят смесь мелкозернистого огнеупорного порошкового наполнителя и отхода производства углеродистого передельного феррохрома, а также смесь порошкового заполнителя, органического волокна и остатка связующего, после чего полученные ранее смеси перемешивают. Технический результат изобретения - устранение выгорания графита при высоких температурах, снижение пористости, повышение прочности огнеупоров. 2 н.п. ф-лы, 1 табл.

Формула изобретения RU 2 365 562 C2

1. Огнеупорная масса, содержащая графит, фосфатное связующее, пластификатор, мелкозернистый огнеупорный порошковый наполнитель, порошковый заполнитель зернистостью 6÷0,5 мм, отличающаяся тем, что она дополнительно содержит органические волокна диаметром не менее 10÷60 мкм, длиной 0,5÷1,0 мм и отход производства углеродистого передельного феррохрома при следующем соотношении компонентов, мас.%:
графит 5÷8 фосфатное связующее 4÷6 пластификатор 5÷10 мелкозернистый огнеупорный порошковый наполнитель 4÷25 органические волокна 0,05÷0,15 отходы производства углеродистого передельного феррохрома 2÷6 порошковый заполнитель зернистостью 6÷0,5 мм остальное

2. Способ получения огнеупорной массы, в котором вначале приготавливают смесь из графита и фосфатного связующего, а затем вводят мелкозернистый огнеупорный порошковый наполнитель и порошковый заполнитель с последующим перемешиванием, отличающийся тем, что вначале графит смешивают с 1/3÷1/2 фосфатного связующего и выдерживают после перемешивания 2÷4 ч, при этом отдельно готовят смесь мелкозернистого огнеупорного порошкового наполнителя и отхода производства углеродистого передельного феррохрома, а также смесь порошкового заполнителя зернистостью 6÷0,5 мм, органического волокна и остатка связующего, после чего полученные ранее смеси перемешивают.

Документы, цитированные в отчете о поиске Патент 2009 года RU2365562C2

Способ приготовления огнеупорной массы 1989
  • Аксельрод Лев Моисеевич
  • Ильин Геннадий Иванович
  • Кортель Александр Августович
  • Горячева Зоя Егоровна
  • Новиков Николай Александрович
  • Мигаль Виктор Павлович
SU1701678A1
Огнеупорный состав 1978
  • Белоусов Юрий Леонидович
  • Рожин Юрий Игоревич
  • Ябурова Лариса Михайловна
SU779345A1
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПЛОТНОГО УГЛЕРОДСОДЕРЖАЩЕГО ОГНЕУПОРА 2000
  • Сороколет Г.П.
  • Клещеногов С.Н.
  • Чуклай А.М.
  • Фролов О.И.
  • Гущин В.Я.
  • Никитенко В.Е.
  • Хроменков С.М.
RU2184714C2
Способ непрерывной и полунепрерывной разливки металлов 1977
  • Козий Н.М.
  • Марченко И.К.
  • Ефимов В.А.
  • Якобше Р.Я.
SU758632A1
Установка для охлаждения и осушки воздуха 1981
  • Малышев В.В.
  • Сарафасланян К.Б.
  • Шаров Ю.К.
  • Яковлева М.Е.
SU995565A1
Устройство для облова рыбоводных прудов 1987
  • Грудцин Владимир Павлович
SU1440445A1

RU 2 365 562 C2

Авторы

Чаплыгин Борис Александрович

Лонзингер Татьяна Мопровна

Афанасьев Александр Алексеевич

Нецветаева Надежда Петровна

Скотников Вадим Анатольевич

Дятлов Владимир Владимирович

Даты

2009-08-27Публикация

2007-07-13Подача