СПОСОБ ОПРЕДЕЛЕНИЯ МОМЕНТА ОКОНЧАНИЯ ПРОЦЕССА ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ Российский патент 2009 года по МПК C25D11/00 

Описание патента на изобретение RU2366765C1

Изобретение относится к области электролитно-плазменной обработки, в частности к плазменно-электролитическому оксидированию поверхностей, и может быть использовано для определения момента окончания процесса плазменно-электролитического оксидирования вентильных металлов, например алюминия и титана, и сплавов на их основе.

Известен способ определения момента окончания процесса микроплазменного оксидирования по достижении конечного напряжения Uкон, при котором покрытие расти перестает или начинает разрушаться, при этом напряжение Uкон определяется по формовочной кривой U(t) в координатах напряжение-время и соответствует участку насыщения указанной кривой [Микроплазменные электрохимические процессы. Обзор / В.И.Белеванцев, О.П.Терлеева, Г.А.Марков, Е.К.Шулепко, А.И.Слонова, В.В.Уткин // Защита металлов, 1998, т.34, №5. - С.471].

Недостатком данного аналога является невысокая точность определения момента окончания процесса, так как наклон формовочной кривой U(t) вблизи Uкон достаточно мал. Поэтому при достижении напряжения Uкон возможен существенный разброс в длительности обработки за счет разброса технологических параметров, что недопустимо, так как при передержке возможно разрушение сформированного покрытия мощными дуговыми разрядами. Другим важным аспектом передержки является неоправданное повышение энергопотребления, что недопустимо для такого энергоемкого процесса, как плазменно-электролитическое оксидирование.

Известен способ определения момента окончания процесса электролитно-плазменного удаления покрытия, включающий измерение переменной составляющей тока и анализ ее изменения во времени. В электрическую цепь включают измерительное сопротивление, переменную составляющую тока измеряют осциллографом по изменению напряжения на измерительном сопротивлении, а момент окончания процесса устанавливают при изменении амплитуды переменной составляющей тока на 2% за время не менее 2 минут [Патент РФ №2119975, кл. C25F 5/00. Публ. 10.10.1998].

Недостатком данного аналога также является малая точность, связанная, во-первых, со сложностью определения изменения амплитуды переменной составляющей тока на 2% с помощью осциллографа, во-вторых, указанное время в 2 минуты может составлять до 10-50% общей длительности плазменно-электролитического оксидирования. Следует отметить, что данный способ используется при удалении, а не при нанесении покрытий электролитно-плазменным методом.

Наиболее близким по технической сущности является способ определения момента окончания процесса электролитно-плазменного удаления покрытия, основанный на измерении переменной составляющей тока и анализе ее изменения во времени. Переменную составляющую тока подают на полосовой фильтр с граничными частотами 500-700 и 1300-1500 Гц, измеряют действующее значение напряжения на выходе фильтра u и определяют значение порогового напряжения u0 путем усреднения значения u в течение 20-40 с от начала обработки, затем начинают отсчет отрезков времени tk и t, при этом, если через 50-70 с от начала обработки напряжение u достигает значения (0,5÷0,6)·u0, то конец отсчета времени tk устанавливают по достижении напряжением u значения (0,7÷1,0)·u0, и момент окончания процесса определяют по достижении t значения (1,4÷1,6)·tk. Расчет значения площади поверхности, освобожденной от покрытия S, ведут по формуле:

S=k·tk,

где k - эмпирический коэффициент пропорциональности.

В случае, если через 50-70 с от начала обработки напряжение u не достигает значения (0,5÷0,6)·u0, процесс электролитно-плазменного удаления покрытия останавливают, так как покрытие удаляться не будет [Патент РФ №2227181, кл. C25F 5/00, 7/00. Публ. 20.04.2004].

Недостатками данного аналога являются, во-первых, существенная сложность метода, во-вторых, невозможность применения его для определения момента окончания процесса плазменно-электролитического оксидирования.

Задачей, решаемой заявляемым изобретением, является повышение точности определения момента окончания процесса плазменно-электролитического оксидирования за счет расширения числа измеряемых параметров и снижение энергоемкости процесса.

Поставленная задача решается таким образом, что в способе определения момента окончания процесса электролитно-плазменной обработки, включающем измерение переменной составляющей тока и анализ ее изменения во времени, в отличие от прототипа, дополнительно измеряют и анализируют переменную составляющую напряжения, которую периодически или постоянно изменяют с частотой 200-20000 Гц, при этом переменные составляющие тока и напряжения подают на полосовые фильтры с граничными частотами 200-18000 и 500-20000 Гц и измеряют сдвиг фаз между отфильтрованными сигналами тока и напряжения. Момент окончания процесса устанавливают по достижении значения сдвига фаз 20-80 градусов.

Существо способа поясняется чертежами, на которых показано изменение в ходе процесса толщины покрытия h (Фиг.1 и 2) и соответствующая кривая динамики сдвига фаз между током и напряжением Ф (Фиг.3 и 4). На Фиг.1 показана динамика толщины покрытия при плазменно-электролитическом оксидировании алюминия в биполярном импульсном режиме. Кривая 1 соответствует напряжению положительного импульса 570 В, отрицательного - 120 В, кривая 2 - напряжению положительного импульса 440 В, отрицательного - 10 В. На Фиг.2 показана динамика толщины покрытия при плазменно-электролитическом оксидировании алюминия при постоянном напряжении 550 В (кривая 1) и 450 В (кривая 2). На Фиг.3 приведен сдвиг фаз между током и напряжением в диапазоне частот 350-750 Гц при плазменно-электролитическом оксидировании алюминия в биполярном импульсном режиме. Кривая 1 соответствует напряжению положительного импульса 570 В, отрицательного - 120 В, кривая 2 - напряжению положительного импульса 440 В, отрицательного - 10 В. На Фиг.4 приведен сдвиг фаз между током и напряжением в диапазоне частот 8000-10000 Гц при плазменно-электролитическом оксидировании алюминия при постоянном напряжении 550 В (кривая 1) и 450 В (кривая 2).

На чертежах видно, что при увеличении толщины покрытия сдвиг фаз Ф увеличивается, причем при длительной обработке в условиях, когда получена максимально возможная толщина покрытия, насыщение кривой Ф(t) происходит гораздо позже момента достижения максимально возможной толщины покрытия. Таким образом, момент достижения выбранного из диапазона 20-80 градусов значения сдвига фаз будет находиться на заметно возрастающей части кривой, что будет обеспечивать достаточную точность способа.

Как видно из графика, изменение кривых объясняется связью закономерностей роста покрытия и импедансом системы «покрытие-микроразряд» при плазменно-электролитическом оксидировании. Находящееся на поверхности металла тонкое оксидное покрытие обладает как активной, так и емкостной проводимостью. При росте покрытия его активная проводимость снижается, что проявляется в наблюдаемом постепенном снижении числа микроразрядов, обеспечивающих активную составляющую проводимости системы. Емкостная проводимость практически не изменяется, так как в силу пористости покрытия она определяется в основном тонким барьерным слоем на дне поры. Такое изменение пропорции между активной и емкостной проводимостями в ходе обработки увеличивает сдвиг фаз между током и напряжением в цепи. Выбор диапазона частот для измерения сдвига фаз Ф осуществляют из соображений максимальной информативности.

Примеры конкретной реализации способа.

Пример 1.

Образцы из алюминия обрабатывали плазменно-электролитическим методом в растворе, содержащем 1 г/л КОН, 2 г/л Na4P2O7·10H2O и 2 г/л Na2SiO3 при температуре 20°С в биполярном импульсном режиме при напряжении положительного импульса 570 В, отрицательного - 120 В и при напряжении положительного импульса 440 В, отрицательного - 10 В (см. Фиг.1 и 3). Для определения момента окончания плазменно-электролитического оксидирования измеряли переменную составляющую тока и анализировали ее изменение во времени, дополнительно измеряли и анализировали переменную составляющую импульсного биполярного напряжения, которое периодически изменяли с частотой 200-20000 Гц, при этом переменные составляющие тока и напряжения подавали на полосовые фильтры с граничными частотами 350 и 750 Гц и измеряли сдвиг фаз между отфильтрованными сигналами тока и напряжения. Момент окончания процесса устанавливали по достижении сдвигом фаз значения 36 град. Результаты приведены в таблице 1, из которой видно, что время достижения максимально возможной толщины покрытия соответствует времени достижения заданного значения сдвига фаз во всех рассматриваемых условиях обработки, при создании как толстослойных, так и тонкослойных покрытий.

Пример 2.

Образцы из алюминия обрабатывали плазменно-электролитическим методом в растворе, содержащем 1 г/л КОН, 2 г/л Na4P2O7·10H2O и 2 г/л Na2SiO3 при температуре 20°С при постоянном напряжении 450 В и 550 В (см. Фиг.2 и 4). Для определения момента окончания плазменно-электролитического оксидирования измеряли переменную составляющую тока и анализировали ее изменение во времени, дополнительно измеряли и анализировали переменную составляющую напряжения, которую периодически изменяли с амплитудой 20 В и частотой 200-20000 Гц, при этом переменные составляющие тока и напряжения подавали на полосовые фильтры с граничными частотами 8000 и 10000 Гц и измеряли сдвиг фаз между отфильтрованными сигналами тока и напряжения. Момент окончания процесса устанавливали по достижении сдвигом фаз значения 35 град. Результаты приведены в таблице 2, из которой видно, что время достижения максимально возможной толщины покрытия соответствует времени достижения заданного значения сдвига фаз во всех рассматриваемых условиях обработки, при создании как толстослойных, так и тонкослойных покрытий.

Таким образом, заявляемое изобретение имеет простое техническое исполнение, позволяет упростить способ определения момента окончания процесса плазменно-электролитического оксидирования, повысить его точность за счет расширения числа измеряемых параметров, снизить энергоемкость процесса.

Способ определения момента окончания процесса плазменно-электролитического оксидирования

Табл.1. Результаты применения способа при плазменно-электролитическом оксидировании в биполярном импульсном режиме Условия обработки Напряжение положительного импульса, В Напряжение отрицательного импульса, В Максимально возможная толщина покрытия, мкм Время достижения максимально возможной толщины покрытия, мин Полоса пропускания полосовых фильтров, Гц 350-750 Значение сдвига фаз для определения момента окончания обработки, град. 36 Время достижения сдвигом фаз
заданного значения, мин

Способ определения момента окончания процесса плазменно-электролитического оксидирования

Табл.2. Результаты применения способа при плазменно-электролитическом оксидировании при постоянном напряжении Условия обработки Напряжение, В 450 550 Максимально возможная толщина покрытия, мкм 2,5±0,9 22,5±1,8 Время достижения максимально возможной толщины покрытия, мин 3,0±0,2 19,0±1,0 Полоса пропускания полосовых фильтров, Гц 8000-10000 Значение сдвига фаз для определения момента окончания обработки, град. 35 Время достижения сдвигом фаз заданного значения, мин 3,1±0,2 19,5±1,0

Похожие патенты RU2366765C1

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ПОКРЫТИЯ В ХОДЕ ПРОЦЕССА ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ 2017
  • Горбатков Михаил Викторович
  • Парфенов Евгений Владимирович
  • Тарасов Павел Валерьевич
  • Мукаева Вета Робертовна
  • Фаррахов Рузиль Галиевич
RU2668344C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ПОКРЫТИЯ В ХОДЕ ПРОЦЕССА ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ 2018
  • Лазарев Денис Михайлович
  • Фаткуллин Азамат Раисович
  • Парфенов Евгений Владимирович
  • Фаррахов Рузиль Галиевич
RU2692120C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ПОКРЫТИЯ В ХОДЕ ПРОЦЕССА ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ 2013
  • Фаткуллин Азамат Раисович
  • Парфенов Евгений Владимирович
  • Ерохин Алексей Леонидович
  • Лазарев Денис Михайлович
  • Даутов Анвар Ибрагимович
RU2540239C1
Способ измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования 2024
  • Хаматдинов Ренат Земфирович
  • Горбатков Михаил Викторович
  • Аубакирова Вета Робертовна
  • Фаррахов Рузиль Галиевич
  • Парфенов Евгений Владимирович
RU2826163C1
СПОСОБ ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ МЕТАЛЛОВ И СПЛАВОВ 2010
  • Гнеденков Сергей Васильевич
  • Коваль Сергей Яковлевич
  • Чижиков Роман Геннадьевич
  • Синебрюхов Сергей Леонидович
  • Машталяр Дмитрий Валерьевич
RU2440445C1
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ПОКРЫТИЯ В ХОДЕ ПРОЦЕССА ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2017
  • Горбатков Михаил Викторович
  • Парфенов Евгений Владимирович
  • Ерохин Алексей Леонидович
  • Мукаева Вета Робертовна
RU2672036C1
СПОСОБ ОПРЕДЕЛЕНИЯ МОМЕНТА ОКОНЧАНИЯ ПРОЦЕССА ЭЛЕКТРОЛИТНО-ПЛАЗМЕННОГО УДАЛЕНИЯ ПОКРЫТИЯ 2003
  • Невьянцева Р.Р.
  • Горбатков С.А.
  • Парфенов Е.В.
  • Быбин А.А.
RU2227181C1
СПОСОБ ОПРЕДЕЛЕНИЯ МОМЕНТА ОКОНЧАНИЯ ПРОЦЕССА ЭЛЕКТРОЛИТНО-ПЛАЗМЕННОГО УДАЛЕНИЯ ПОКРЫТИЯ 2007
  • Парфенов Евгений Владимирович
  • Невьянцева Римма Рахимзяновна
  • Быбин Андрей Александрович
RU2360045C1
СПОСОБ ИЗМЕРЕНИЯ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ 2003
  • Невьянцева Р.Р.
  • Горбатков С.А.
  • Парфенов Е.В.
  • Быбин А.А.
RU2240500C1
Способ оценки толщины и пористости МДО-покрытия в электролитической ванне на основе измерения импеданса 2023
  • Печерская Екатерина Анатольевна
  • Максов Андрей Анатольевич
  • Карпанин Олег Валентинович
  • Голубков Павел Евгеньевич
RU2817066C1

Реферат патента 2009 года СПОСОБ ОПРЕДЕЛЕНИЯ МОМЕНТА ОКОНЧАНИЯ ПРОЦЕССА ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ

Изобретение относится к области электролитно-плазменной обработки поверхностей и может быть использовано для определения момента окончания плазменно-электролитического оксидирования вентильных металлов, например алюминия и титана, и сплавов на их основе. Способ включает измерение переменной составляющей тока и анализ ее изменения во времени, измерение и анализ переменной составляющей напряжения, которую периодически или постоянно изменяют с частотой 200-20000 Гц, при этом переменные составляющие тока и напряжения подают на полосовые фильтры с граничными частотами 200-18000 и 500-20000 Гц и измеряют сдвиг фаз между отфильтрованными сигналами тока и напряжения. Момент окончания процесса устанавливают по достижении значения сдвига фаз 20-80 градусов. Технический результат: повышение точности определения момента окончания процесса плазменно-электролитического оксидирования за счет расширения числа измеряемых параметров, снижение энергоемкости процесса. 2 табл., 4 ил.

Формула изобретения RU 2 366 765 C1

Способ определения момента окончания процесса электролитно-плазменной обработки, включающий измерение переменной составляющей тока и анализ ее изменения во времени, отличающийся тем, что дополнительно измеряют и анализируют переменную составляющую напряжения, которую периодически или постоянно изменяют с частотой 200-20000 Гц, при этом переменные составляющие тока и напряжения подают на полосовые фильтры с граничными частотами 200-18000 и 500-20000 Гц и измеряют сдвиг фаз между отфильтрованными сигналами тока и напряжения, а момент окончания процесса устанавливают по достижении значения сдвига фаз 20-80°.

Документы, цитированные в отчете о поиске Патент 2009 года RU2366765C1

СПОСОБ ОПРЕДЕЛЕНИЯ МОМЕНТА ОКОНЧАНИЯ ПРОЦЕССА ЭЛЕКТРОЛИТНО-ПЛАЗМЕННОГО УДАЛЕНИЯ ПОКРЫТИЯ 2003
  • Невьянцева Р.Р.
  • Горбатков С.А.
  • Парфенов Е.В.
  • Быбин А.А.
RU2227181C1
СПОСОБ ОПРЕДЕЛЕНИЯ МОМЕНТА ОКОНЧАНИЯ ПРОЦЕССА ЭЛЕКТРОЛИТНО-ПЛАЗМЕННОГО УДАЛЕНИЯ ПОКРЫТИЯ 1996
  • Амирханова Н.А.
  • Невьянцева Р.Р.
  • Тимергазина Т.М.
  • Парфенов Е.В.
RU2119975C1
Пюпитр для работы на пишущих машинах 1922
  • Лавровский Д.П.
SU86A1

RU 2 366 765 C1

Авторы

Парфенов Евгений Владимирович

Невьянцева Римма Рахимзяновна

Быбин Андрей Александрович

Ерохин Алексей Леонидович

Маттьюз Аллан

Даты

2009-09-10Публикация

2008-10-02Подача