СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩИХ ЧУГУНОВ Российский патент 2009 года по МПК C21C5/28 

Описание патента на изобретение RU2371483C2

Изобретение относится к черной металлургии, в частности к способу переработки ванадийсодержащих чугунов с получением стали и ванадийсодержащих шлаков, пригодных для дальнейшего использования.

Наиболее близким по технической сущности и достигаемому результату в настоящее время является типовой способ переработки ванадиевого чугуна дуплекс-процессом, предусматривающий заливку ванадиевого чугуна в конвертер, продувку его кислородом с присадкой расчетного количества охладителей, передел полупродукта в сталь путем заливки полупродукта, зажигания и продувки плавки кислородом, порционной присадки шлакообразующих и последующего выпуска металла в ковш, его науглероживания, раскисления, легирования и доводки (Технологическая инструкция ТИ 102-СТ.К-66-2004. Производство ванадиевого шлака и стали в конвертерах, ОАО «Нижнетегильский металлургический комбинат», стр.3, 4, 5, 6, 13, 14, 24, 29).

Известный способ позволяет получить товарный ванадиевый шлак, содержащий V2O5 более 14,0% и металл-полупродукт, который перерабатывается на сталь.

При существующей технологии переработки ванадиевого шлака дуплекс-процесса на ОАО "Тулачермет" регламентируют в шлаке массовую долю оксида марганца до 12,0% и до 5,0% оксида кальция.

Для обеспечения выплавки такого ванадиевого шлака на ОАО «НТМК» в доменном переделе ограничивают массовую долю марганца в чугуне до 0,35%, а в конвертерном переделе при деванадации чугуна для снижения оксида марганца вводят в шлак ОКД (обожженную кремнийсодержащую добавку).

В технологической инструкции ОАО «НТМК» по производству ванадиевого шлака и стали в конвертерах ТИ 102-СТ.К-66-2004 в пункте 1.11.8 указывается следующее.

При содержании кремния в чугуне менее 0,25%, для получения кондиционного ванадиевого шлака, необходимо присаживать на плавку из расчета замены каждой 0,01% недостающей до 0,25% кремния в чугуне:

55-70 кг кремнеземсодержащей добавки (ОКД) при содержании марганца в чугуне 0,25-0,30%;

70-85 кг ОКД при содержании марганца в чугуне 0,31-0,35%.

При содержании марганца в чугуне более 0,35% ОКД не использовать.

Обожженная кремнеземсодержащая добавка (ОКД) содержит более 55,0% оксидов кремния, более 25,0% оксидов алюминия и более 5,0% оксидов кальция и магния.

Использование ОКД ухудшает качество ванадиевого шлака и при существующем химическом составе чугуна снижает в нем массовую долю пентаоксида ванадия с 23,7% до 17,4%.

Химический состав шлака, % Feобщ V2O5 CaO SiO2 MnO TiO2 MgO Al2O3 При использовании окалины 30,0 23,7 2,0 11,8 14,7 8,2 0,8 0,1 При использовании окалины + ОКД 30,0 17,4 2,4 18,7 10,8 6,0 1,5 4,6

Товарный ванадиевый шлак имеет температуру плавления более 1250°С (табл.1), выкантовывается из конвертера в шлаковую чашу в твердофазном состоянии, что приводит к большой неоднородности его химического состава в объеме шлакового слитка.

На стадии стального передела полупродукта образуется шлак, содержащий 2,0-4,0% V2O5, который не может быть использован в металлургическом переделе и вывозится на отвалы, загрязняя окружающую среду.

Переработка ванадиевых чугунов в конвертерах ОАО «НТМК» дуплекс-процессом сдерживает рост производства объема стали из-за потерь агрегатного времени, что не соответствует требованиям экономики. Поэтому в отдельные периоды для обеспечения максимального производства ванадиевый чугун перерабатывают монопроцессом.

Суммарный доход от производства ванадиевого шлака дуплекс-процессом существенно ниже, чем от производства стали монопроцессом.

Однако ванадийсодержащие шлаки монопроцесса в настоящее время не могут быть эффективно переработаны в химическом переделе с извлечением ванадия.

Использование моношлаков в доменном переделе ограниченно из-за накопления и увеличения фосфора в чугуне.

В доменных печах большого объема использование моношлаков не целесообразно.

Проблема эффективного использования моношлаков на ОАО «НТМК» является очень актуальной.

Задача изобретения - разработка экономически целесообразной технологии переработки ванадиевого чугуна в кислородных конвертерах дуплекс-процессом с использованием ванадийсодержащих шлаков монопроцесса и/или стальных шлаков дуплекс-процесса.

Технический результат, достигаемый при решении данной задачи, - увеличение выхода годного, повышение извлечения ванадия в товарные ванадийсодержащие шлаки и исключение экологически опасных отвальных шлаков.

Техническое решение данной задачи сводится к оптимизации производительности конвертеров (с учетом их капитальных ремонтов) и машин непрерывного литья заготовок без ухудшения извлечения ванадия в товарный шлак и увеличения экологически опасных техногенных образований.

Технический результат достигается тем, что в известном способе, включающем переработку ванадиевого чугуна в кислородных конвертерах на ванадиевый шлак, полупродукт или сталь, предусматривающем заливку ванадиевого чугуна в конвертер, продувку его кислородом, подачу охладителей и шлакообразующих материалов, выпуск металла в ковш, накопление шлака в конвертере и выкантовывание шлака в шлаковую чашу, по изобретению при переработке ванадиевого чугуна на полупродукт вместо обожженной кремнеземсодержащей добавки на завершающей плавке цикла накопления ванадиевого шлака в качестве окислителей-охладителей в конвертер присаживают ванадийсодержащие шлаки монопроцесса и/или стальные шлаки дуплекс-процесса.

Изобретение основано на том, что для увеличения выхода годного в конвертерном переделе при деванадации чугуна целесообразно работать с накоплением в конвертере шлака двух-четырех плавок. Для уменьшения окисленности ванадиевых шлаков последнюю плавку цикла накопления завершают при температуре выше 1400°С, максимально снижая массовую долю железа в шлаке. Для повышения температуры на завершающей плавке цикла накопления ванадиевого шлака в конвертер присаживают дробленые до 200 мм ванадийсодержащие шлаки монопроцесса и/или стальные шлаки дуплекс-процесса в количестве 1,5-20,0 кг/т чугуна с обеспечением температуры металла в конце продувки на 100-200°С выше температуры ликвидуса.

Ванадиевые шлаки выливаются из конвертера в жидком состоянии, практически не реагируют с попадающим в чаши полупродуктом и после кристаллизации содержат меньше дисперсного железа и металловключений.

Использование при деванадации чугуна моно- и стальных шлаков с массовой долей пентаоксида ванадия более 2,0% увеличивает извлечение ванадия в товарные ванадийсодержащие шлаки на 1,5-2,0%.

Сущность изобретения заключается в том, что использование ванадийсодержащих шлаков монопроцесса и стальных шлаков, полученных при продувке полупродукта от последней плавки цикла накопления, позволяет сохранить максимальное количество железа в жидком полупродукте и увеличить извлечение ванадия в товарные ванадиевые шлаки.

Использование предлагаемой технологии по сравнению с известной позволяет при сохранении всех преимуществ переработки ванадиевых чугунов в кислородных конвертерах дуплекс- и монопроцессом получать товарные ванадийсодержащие шлаки с заданными физико-химическими свойствами для переработки по различным технологиям, повысить выход годного, увеличить сквозное извлечение ванадия и исключить попадание экологически опасных соединений в окружающую среду.

Опыты проводили на металлургическом комплексе, оснащенном кислородными конвертерами емкостью 160 т. Провели 4 серии плавок с продувкой ванадиевого чугуна на сталь дуплекс-процессом. Параметры плавки были следующими.

I серия плавок. В конвертер заливали 167 т ванадиевого чугуна следующего химического состава, мас.%: V 0,44; Si 0,08-0,11; Mn 0,32-0,34; Ti 0,15-0,17; S 0,023-0,025 и Р 0,055-0,058 (табл.2).

Продувку плавки проводили кислородом через четырехсопловую фурму с интенсивностью 370-390 куб.м/мин в течение 6-8 минут. В начале продувки фурму устанавливали на высоте 2,0 м над уровнем спокойного металла, затем в течение 2 минут фурму опускали до 1,0 м. На первых минутах продувки плавки по тракту сыпучих материалов присаживали по 7500-7600 кг окалины следующего химического состава, мас.%: 3,9 - FeO; 90,4 - Fe2O3; 0,8 - СаО; 3,6 - SiO2; 0,8 - MnO; 0,3 - MgO; 0,2 - Al2O3; 0,02 - S.

По ходу продувки третьей плавки завершающего цикла накопления шлака в конвертер по тракту сыпучих материалов загрузили 900 кг моношлака, содержащего, мас.%: FeO 18-25, CaO 38-44, SiO2 8-12, V2O5 4-5, TiO2 2-3, MnO 3-5, MgO 5-10, Al2O3 1-2, Р 0,4-0,6, мет.вкл. 6-12. На последнюю плавку цикла накопления шлака окалину в конвертер не присаживали.

В результате продувки последней плавки цикла накопления получили полупродукт с температурой 1460°С следующего химического состава, мас.%: С 2,8; V 0,10; Si 0,001; Mn 0,03; Ti 0,001; S 0,024 и Р 0,053.

Полупродукт передавали на другой конвертер для переработки на сталь.

Ванадийсодержащий шлак в конвертере получили в жидком состоянии, его слили в шлаковую чашу и после охлаждения выкантовали на шлаковый двор, раздробили до фракции менее 200 мм и отобрали усредненную пробу.

Шлак имел следующий химический состав, мас.%: Feобщ 25,4; V2O5 22,2; CaO 4,9; SiO2 13,9; MnO 14,5; TiO2 9,9; MgO 1,6; Р 0,10 и мет.вкл. 5,8.

II серия плавок. В конвертер заливали 167 т ванадиевого чугуна следующего химического состава, мас.%: V 0,43-0,44; Si 0,09-0,11; Mn 0,33-0,34; Ti 0,16-0,18; S 0,025-0,027 и Р 0,056-0,058.

Продувку плавок проводили кислородом через четырехсопловую фурму с интенсивностью 370-390 куб.м/мин в течение 6 минут. В начале продувки фурму устанавливали на высоте 2,0 м над уровнем спокойного металла, затем в течение 2 минут фурму опускали до 1,0 м. На первых минутах продувки плавки по тракту сыпучих материалов присаживали по 7500-7600 кг окалины следующего химического состава, мас.%: 3,9 - FeO; 90,4 - Fe2O3; 0,8 - СаО; 3,6 - SiO2; 0,8 - MnO; 0,3 - MgO; 0,2 - Al2O3; 0,02 - S.

По ходу продувки четвертой плавки завершающего цикла накопления шлака в конвертер по тракту сыпучих материалов загрузили 1400 кг моношлака, содержащего, мас.%: FeO 18-25, CaO 38-44, SiO2 8-12, V2O5 4-5, TiO2 2-3, MnO 3-5, MgO 5-10, Al2O3 1-2, Р 0,4-0,6, мет.вкл. 6-12. На последнюю плавку цикла накопления шлака в конвертер окалину не присаживали.

В результате продувки последней плавки цикла накопления получили полупродукт с температурой 1470°С следующего химического состава, мас.%: С 2,7; V 0,09; Si 0,001; Mn 0,02; Ti 0,001; S 0,023 и Р 0,054. Полученный ванадийсодержащий шлак имел следующий химический состав, мас.%: Feобщ 24,0; V2O5 21,9; CaO 5,1; SiO2 14,9; MnO 15,2; TiO2 10,0; MgO 1,7; Р 0,096 и мет.вкл. 6,9 (табл.2).

III серия плавок. В конвертер заливали 167 т ванадиевого чугуна следующего химического состава, мас.%: V 0,42-0,44; Si 0,09-0,11; Mn 0,33-0,35; Ti 0,16-0,18; S 0,023-0,025 и Р 0,055-0,056.

Продувку плавок проводили кислородом через четырехсопловую фурму с интенсивностью 380-390 куб.м/мин в течение 6 минут. В начале продувки фурму устанавливали на высоте 2,0 м над уровнем спокойного металла, затем в течение 2 минут фурму опускали до 1,0 м. На первых минутах продувки плавки по тракту сыпучих материалов присаживали по 7600 кг окалины следующего химического состава, мас.%: 3,9 - FeO; 90,4 - Fe2O3; 0,8 - СаО; 3,6 - SiO2; 0,8 - MnO; 0,3 - MgO; 0,2 - Al2O3; 0,02 - S.

По ходу продувки третьей плавки завершающего цикла накопления шлака в конвертер по тракту сыпучих материалов загрузили 2000 кг стального шлака, содержащего, мас.%: FeO 14-16, CaO 44-45, SiO2 11-13, V2O5 3-4, TiO2 1-2, MnO 2-3, MgO 8-10, Al2O3 1-2, Р 0,4-0,5, мет.вкл. 2-6. На последнюю плавку цикла накопления шлака в конвертер окалину не присаживали.

В результате продувки последней плавки цикла накопления получили полупродукт с температурой 1450°С следующего химического состава, мас.%: С 3,0; V 0,08; Si 0,001; Mn 0,03; Ti 0,001; S 0,024 и Р 0,056. Полученный ванадийсодержащий шлак имел следующий химический состав, мас.%: Feобщ 18,0; V2O5 22,9; СаО 11,7; SiO2 17,4; MnO 15,9; TiO2 10,5; MgO 2,8; Р 0,170 и мет.вкл. 5,9 (табл.3).

IV серия плавок. В конвертер заливали 167 т ванадиевого чугуна следующего химического состава, мас.%: V 0,43-0,44; Si 0,09-0,12; Mn 0,34-0,35; Ti 0,16-0,18; S 0,024-0,026 и Р 0,056-0,058.

Продувку плавок проводили кислородом через четырехсопловую фурму с интенсивностью 380-390 куб.м/мин в течение 6 минут. В начале продувки фурму устанавливали на высоте 2,0 м над уровнем спокойного металла, затем в течение 2 минут фурму опускали до 1,0 м. На первых минутах продувки плавки по тракту сыпучих материалов присаживали по 7500-7600 кг окалины следующего химического состава, мас.%: 3,9 - FeO; 90,4 - Fe2O3; 0,8 - СаО; 3,6 - SiO2; 0,8 - MnO; 0,3 - MgO; 0,2 - Al2O3; 0,02 - S.

По ходу продувки четвертой плавки завершающего цикла накопления шлака в конвертер по тракту сыпучих материалов загрузили 3000 кг стального шлака, содержащего, мас.%: FeO 14-16, СаО 44-45, SiO2 11-13, V2O5 3-4, TiO2 1-2, MnO 2-3, MgO 8-10, Al2O3 1-2, Р 0,4-0,5, мет.вкл. 2-6. На последнюю плавку цикла накопления шлака в конвертер окалину не присаживали.

В результате продувки последней плавки цикла накопления получили полупродукт с температурой 1440°С следующего химического состава, мас.%: С 3,1; V 0,07; Si 0,001; Mn 0,02; Ti 0,001; S 0,023 и Р 0,056. Полученный ванадийсодержащий шлак имел следующий химический состав, мас.%: Feобщ 20,0; V2O5 23,4; СаО 9,6; SiO2 17,4; MnO 16,2; TiO2 10,7; MgO 2,4; Р 0,152 и мет.вкл. 5,4 (табл.3).

Учитывая высокую концентрацию остаточного ванадия (0,07-0,10% вместо 0,04% по инструкции) в полупродукте последних плавок цикла накопления шлака, стальной шлак после продувки этого полупродукта на сталь выкантовывали в отдельную чашу, после охлаждения дробили и использовали совместно с моношлаком при деванадации чугуна.

Приведенные примеры не исчерпывают все возможные варианты реализации изобретения, и на практике могут быть легко получены другие варианты способа, не выходящие за рамки изобретения.

Нижний предел расхода ванадийсодержащих шлаков монопроцесса и стальных шлаков дуплекс-процесса в количестве 1,5 кг/т чугуна обусловлен тем, что ему соответствует минимум материальных и энергетических затрат, связанных с подготовкой и использованием этих шлаков.

Верхний предел расхода ванадийсодержащих шлаков монопроцесса и стальных шлаков дуплекс-процесса в количестве 20,0 кг/т чугуна связан с получением товарных ванадиевых шлаков, кондиционных по содержанию оксидов кальция и фосфора.

Использование новой технологии по сравнению с существующей позволит следующее.

Увеличить в шлаке массовую долю пентаоксида ванадия с 17-20% до 22-24% за счет введения его из моношлака и снижения оксидов железа, кремния и алюминия.

Увеличить сквозное извлечение ванадия в товарный шлак на 1,0-1,5%.

Ежегодно получать дополнительно более 200 тонн ванадия в товарном шлаке.

Перерабатывать более 8500 тонн моно- и стальных шлаков в год.

Продувать 2-3 плавки ванадиевого чугуна монопроцессом ежедневно.

Исключить рост экологически опасных техногенных образований (отвальных шлаков).

Экономический эффект при внедрении новой технологии ежегодно составит более

200·350000=70000000 руб. (350000 руб. - стоимость 1,0 тонны ванадия).

Источники информации

1. Производство ванадиевого шлака и стали в конвертерах. Технологическая инструкция ТИ 102-СТ.К-66-2004, ОАО «Нижнетагильский металлургический комбинат».

Похожие патенты RU2371483C2

название год авторы номер документа
ИЗВЕСТКОВО-ВАНАДИЕВЫЙ ШЛАК И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1991
  • Криночкин Э.В.
  • Петренев В.В.
  • Киричков А.А.
  • Чернушевич А.В.
  • Жириков В.Н.
  • Литовский В.Я.
  • Третьяков М.А.
  • Комратов Ю.С.
  • Куклинский М.И.
  • Беловодченко А.И.
  • Ляпцев В.С.
  • Корогодский В.Г.
  • Мальцев Ю.Б.
  • Ватолин Н.А.
  • Осокин В.А.
  • Бородулин Е.К.
RU2023726C1
СПОСОБ ПЕРЕРАБОТКИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ НИЗКОКРЕМНИСТОГО ВАНАДИЙСОДЕРЖАЩЕГО МЕТАЛЛИЧЕСКОГО РАСПЛАВА 2014
  • Смирнов Леонид Андреевич
  • Ровнушкин Виктор Аркадьевич
  • Смирнов Андрей Леонидович
RU2566230C2
СПОСОБ КОНВЕРТЕРНОЙ ПЛАВКИ С ИСПОЛЬЗОВАНИЕМ МЕТАЛЛИЗОВАННЫХ МАТЕРИАЛОВ 1998
  • Буявых С.П.
  • Ильин В.И.
  • Исупов Ю.Д.
  • Кривых В.А.
  • Кузнецов Е.В.
  • Кузовков А.Я.
  • Леушин В.Н.
  • Меламуд С.Г.
  • Огуречников А.П.
  • Ровнушкин В.А.
  • Смирнов Л.А.
  • Чернушевич А.В.
RU2145356C1
СПОСОБ ПРОИЗВОДСТВА ВАНАДИЕВОГО ШЛАКА И ПРИРОДНОЛЕГИРОВАННОЙ ВАНАДИЕМ СТАЛИ 1997
  • Александров Б.Л.
  • Киричков А.А.
  • Комратов Ю.С.
  • Криночкин Э.В.
  • Кузовков А.Я.
  • Петренев В.В.
  • Чернушевич А.В.
RU2118376C1
СПОСОБ ПИРОМЕТАЛЛУРГИЧЕСКОЙ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩИХ И ЖЕЛЕЗОРУДНЫХ МАТЕРИАЛОВ 1997
  • Александров Б.Л.
  • Ватолин Н.А.
  • Воробьев Н.И.
  • Гаврилюк Г.Г.
  • Каменских А.А.
  • Комратов Ю.С.
  • Криночкин Э.В.
  • Кузовков А.Я.
  • Петренев В.В.
  • Топорищев И.Г.
  • Шаврин С.В.
RU2105818C1
СПОСОБ ПРОИЗВОДСТВА ВАНАДИЕВОГО ШЛАКА И ЛЕГИРОВАННОЙ ВАНАДИЕМ СТАЛИ 2008
  • Гильманов Марат Риматович
  • Киричков Анатолий Александрович
  • Мухатдинов Насибулла Хадиатович
  • Мухранов Николай Валентинович
  • Петренко Юрий Петрович
  • Фетисов Александр Архипович
  • Хамлов Юрий Николаевич
RU2416650C2
СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩИХ ЧУГУНОВ 2008
  • Козлов Владиллен Александрович
  • Карпов Анатолий Александрович
  • Петренев Владимир Вениаминович
  • Вдовин Виталий Викторович
  • Печенкина Анна Аверьяновна
  • Васин Евгений Александрович
  • Чесноков Юрий Анатольевич
RU2385349C2
СПОСОБ ПЕРЕДЕЛА ВАНАДИЕВОГО ЧУГУНА НИКОМ-ПРОЦЕССОМ 1999
  • Шевцов А.Л.
  • Кузовков А.Я.
  • Крупин М.А.
  • Ильин В.И.
  • Чернушевич А.В.
  • Смирнов Л.А.
  • Ровнушкин В.А.
  • Дерябин Ю.А.
  • Кокареко О.Н.
  • Батуев С.Б.
RU2148088C1
СПОСОБ ПРОИЗВОДСТВА ПРИРОДНО-ЛЕГИРОВАННОЙ ВАНАДИЕМ СТАЛИ ПРИ ПЕРЕДЕЛЕ ВАНАДИЕВОГО ЧУГУНА В КИСЛОРОДНЫХ КОНВЕРТЕРАХ МОНОПРОЦЕССОМ С РАСХОДОМ МЕТАЛЛОЛОМА ДО 30% 1997
  • Александров Б.Л.
  • Аршанский М.И.
  • Комратов Ю.С.
  • Криночкин Э.В.
  • Кузовков А.Я.
  • Петренев В.В.
  • Чернушевич А.В.
RU2105072C1
СПОСОБ ПРОИЗВОДСТВА МИКРОЛЕГИРОВАННОЙ ВАНАДИЕМ СТАЛИ 1997
  • Александров Б.Л.
  • Беловодченко А.И.
  • Киричков А.А.
  • Комратов Ю.С.
  • Криночкин Э.В.
  • Кузовков А.Я.
  • Куклинский М.И.
  • Ляпцев В.С.
  • Милютин Н.М.
  • Петренев В.В.
  • Полянский А.М.
  • Фетисов А.А.
  • Чернушевич А.В.
RU2118380C1

Реферат патента 2009 года СПОСОБ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩИХ ЧУГУНОВ

Изобретение относится к черной металлургии, в частности к способу переработки ванадийсодержащих чугунов. Способ включает заливку чугуна в конвертер, присадку окислителей-охладителей и шлакообразующих материалов, продувку металла кислородом, выпуск его в ковш, накопление в конвертере ванадиевого шлака от цикла двух-четырех предыдущих плавок и его кантовку в шлаковую чашу. На завершающей плавке цикла накопления ванадиевого шлака в качестве окислителей-охладителей в конвертер присаживают дробленые до 200 мм ванадийсодержащие шлаки монопроцесса и/или стальные шлаки дуплекс-процесса в количестве 1,5-20,0 кг/т чугуна и обеспечивают температуру металла в конце продувки на 100-200°С выше температуры ликвидуса. Использование изобретение позволит получать товарные ванадийсодержащие шлаки, повысить выход годного. 3 табл.

Формула изобретения RU 2 371 483 C2

Способ переработки ванадийсодержащих чугунов, включающий заливку чугуна в конвертер, присадку окислителей-охладителей и шлакообразующих материалов, продувку металла кислородом, выпуск его в ковш, накопление в конвертере ванадиевого шлака от цикла двух-четырех предыдущих плавок и его кантовка в шлаковую чашу, отличающийся тем, что на завершающей плавке цикла накопления ванадиевого шлака в качестве окислителей-охладителей в конвертер присаживают дробленые до 200 мм ванадийсодержащие шлаки монопроцесса и/или стальные шлаки дуплекс-процесса в количестве 1,5-20,0 кг/т чугуна с обеспечением температуры металла в конце продувки на 100-200°С выше температуры ликвидуса.

Документы, цитированные в отчете о поиске Патент 2009 года RU2371483C2

Транспортер для перевозки товарных вагонов по трамвайным путям 1919
  • Калашников Н.А.
SU102A1
Приспособление для соединения пучка кисти с трубкою или втулкою, служащей для прикрепления ручки 1915
  • Кочетков Я.Н.
SU66A1
Производство ванадиевого шлака и стали в конвертерах
ОАО Нижнетагильский металлургический комбинат
СПОСОБ ПЕРЕДЕЛА ВАНАДИЕВОГО ЧУГУНА НИКОМ-ПРОЦЕССОМ 1999
  • Шевцов А.Л.
  • Кузовков А.Я.
  • Крупин М.А.
  • Ильин В.И.
  • Чернушевич А.В.
  • Смирнов Л.А.
  • Ровнушкин В.А.
  • Дерябин Ю.А.
  • Кокареко О.Н.
  • Батуев С.Б.
RU2148088C1
СПОСОБ ПРОИЗВОДСТВА МИКРОЛЕГИРОВАННОЙ ВАНАДИЕМ СТАЛИ 1997
  • Александров Б.Л.
  • Беловодченко А.И.
  • Киричков А.А.
  • Комратов Ю.С.
  • Криночкин Э.В.
  • Кузовков А.Я.
  • Куклинский М.И.
  • Ляпцев В.С.
  • Милютин Н.М.
  • Петренев В.В.
  • Полянский А.М.
  • Фетисов А.А.
  • Чернушевич А.В.
RU2118380C1
Способ конвертерного передела ванадиевого чугуна дуплекс-процессом 1986
  • Смирнов Леонид Андреевич
  • Василенко Геннадий Николаевич
  • Фрейденберг Анатолий Самуилович
  • Кокареко Олег Николаевич
  • Щекалев Юрий Степанович
  • Фугман Гарри Иванович
  • Корогодский Виталий Григорьевич
  • Третьяков Михаил Андреевич
  • Червяков Борис Дмитриевич
  • Кричевцов Евгений Алексеевич
SU1425213A1
СПОСОБ ПИРОМЕТАЛЛУРГИЧЕСКОЙ ПЕРЕРАБОТКИ ВАНАДИЙСОДЕРЖАЩИХ И ЖЕЛЕЗОРУДНЫХ МАТЕРИАЛОВ 1997
  • Александров Б.Л.
  • Ватолин Н.А.
  • Воробьев Н.И.
  • Гаврилюк Г.Г.
  • Каменских А.А.
  • Комратов Ю.С.
  • Криночкин Э.В.
  • Кузовков А.Я.
  • Петренев В.В.
  • Топорищев И.Г.
  • Шаврин С.В.
RU2105818C1

RU 2 371 483 C2

Авторы

Киричков Анатолий Александрович

Козлов Владиллен Александрович

Кушнарев Алексей Владиславович

Кулик Вадим Михайлович

Петренев Владимир Вениаминович

Юрьев Алексей Борисович

Даты

2009-10-27Публикация

2007-03-30Подача