СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА Российский патент 2009 года по МПК C22F1/10 

Описание патента на изобретение RU2374356C1

Изобретение относится к технике производства изделий преимущественно типа тонких прутков и проволоки из сплава на основе никелида титана, обладающего эффектом памяти формы.

Из известных способов получения подобных изделий из сплавов, обладающих эффектом памяти формы, наиболее близким является способ термомеханической обработки при изготовлении сверхупругой детали типа проволоки из сплава никеля и титана (см. FR 2758338 A1, 17.07.1998 г.), при котором достигается увеличение упругих свойств изделий. Способ включает выдержку заготовки при температуре от 400 до 520°C в течение 5-60 минут после предварительной вытяжки на 15-28%. Перед указанной выдержкой может также проводиться дополнительный отжиг в течение 1-2 минут при 700-800°C или мгновенный отжиг в течение 10-30 секунд при 600-800°C. При этом вытяжка может проводиться как до, так и после отжига, как холодная вытяжка, так и теплая при >500°C. Вытяжка может проводиться с промежуточным отжигом при 400-550°C. Однако этот способ включает такое разнообразие сочетаний термического и механического воздействий на изделие, что, кроме лабораторных условий, его сложно применить в производстве.

Задачей изобретения является упрощение технологических и технических процессов при изготовлении изделий из сплава никелида титана в серийном производстве при одновременном обеспечении строгой прямолинейности изделия, а также высоких значений псевдоупругости, механических свойств и долговечности.

Решение данной задачи достигается тем, что изделие (или, при необходимости, заготовки изделий) в ходе производства подвергается термомеханическому воздействию в два этапа. Первый этап включает нагрев изделия до температуры 500÷600°C, выдержку при данной температуре в течение 3-10 минут, затем деформирование при данной температуре растяжением со степенью не более 1% и охлаждение в деформированном состоянии до комнатной температуры. Второй этап включает: нагрев изделия до температуры 250÷350°C, выдержку при данной температуре не более одной минуты, повторное деформирование при данной температуре растяжением со степенью не более 1% и охлаждение изделия или заготовки до комнатной температуры одновременно с разгрузкой.

Для реализации способа в производственных условиях использовались нагревательное устройство и механизм создания деформации растяжения. После нагрева изделия (или заготовки) до 550°C включали механизм растяжения. Выдерживали изделие при этой температуре в течение 3 минут и затем в течение минуты осуществляли растяжение до степени 1%. Затем нагрев отключали, и изделие охлаждалось до исходной температуры. Затем изделие повторно нагревали до 300°C, выдерживали в течение одной минуты и осуществляли растяжение со степенью 1%. Отключали нагрев, и изделие охлаждалось до температуры окружающей среды.

Повторный нагрев и растяжение в случае мелкосерийного производства может быть осуществлено на этом же оборудовании. Для крупносерийного производства каждый этап будет осуществляться на своем комплекте механизмов.

Данный способ термомеханической обработки обеспечивает высокую псевдоупрутость в пределах разгрузки (≥8%) и прямолинейность изделия, так как после волочения проволока всегда криволинейная и без соответствующей обработки не может использоваться в практике, например, в качестве антенн и сверхупругих элементов в медицине. Прямолинейность проволоки при ее освобождении из бухты - обязательное требование потребителя. Кроме того, предложенный способ термомеханической обработки обеспечивает высокое сопротивление изделия усталостному разрушению. Например, деформация проволоки односторонним изгибом в пределах 5% обеспечивает долговечность 2600-3000 циклов, в то время как существующие способы такую долговечность не гарантируют.

В таблице приведены механические свойства проволоки до и после обработки предложенным способом: проволоки диаметром от 0,15 до 1,0 мм состава Ti-50,6 ат.% Ni(плавка 41) и Ti-50,8 ат.% Ni, Ni (плавка 43).

Таблица № плавки и вид обработки σф, МПа
фазовый предел текучести
σт, МПа
обычный предел текучести
σв, МПа
предел прочности
δ, %
относит. удлинение при растяжении
Плавка 41 (после волочения) После холодного волочения отсутствует; После теплого волочения 450-520 500-600 1150-1250 10-12 Плавка 41 (после термо-механической обработки) 500-550 1100-1200 1300-1380 10-12 Плавка 43 (после волочения) 550-600 750-850 1500-1580 10-12 Плавка 43 (после термо-механической обработки) 580-610 1300-1350 1450-1550 10-13

Эксперименты показали также, что деформация псевдоупругости после волочения проволоки составляет 6-7%, при этом проволока остается криволинейной, то есть непригодной к практическому использованию. После термомеханической обработки («прямого отжига») псевдоупругая деформация всегда не ниже 8%, и проволока приобретает прямолинейную форму.

Таким образом, предлагаемый способ, легко осуществимый в производстве, позволяет обеспечить строгую прямолинейность изделия, а также высокие значения псевдоупругости, механических свойств и долговечности.

Похожие патенты RU2374356C1

название год авторы номер документа
МЕТАЛЛИЧЕСКИЙ НАНОСТРУКТУРНЫЙ СПЛАВ НА ОСНОВЕ ТИТАНА И СПОСОБ ЕГО ОБРАБОТКИ 2011
  • Прокошкин Сергей Дмитриевич
  • Петржик Михаил Иванович
  • Филонов Михаил Рудольфович
  • Дубинский Сергей Михайлович
  • Жукова Юлия Сергеевна
  • Браиловский Владимир Иосифович
  • Инаекян Каринэ Эрнестовна
RU2485197C1
Способ получения тонкой проволоки из сплава TiNiTa 2020
  • Севостьянов Михаил Анатольевич
  • Сергиенко Константин Владимирович
  • Баикин Александр Сергеевич
  • Насакина Елена Олеговна
  • Конушкин Сергей Викторович
  • Каплан Михаил Александрович
  • Морозова Ярослава Анатольевна
RU2759624C1
Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка 2020
  • Севостьянов Михаил Анатольевич
  • Сергиенко Константин Владимирович
  • Баикин Александр Сергеевич
  • Насакина Елена Олеговна
  • Колмаков Алексей Георгиевич
  • Конушкин Сергей Викторович
  • Каплан Михаил Александрович
  • Морозова Ярослава Анатольевна
  • Михайлова Анна Владимировна
RU2751065C1
Способ изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с модифицированной поверхностью 2016
  • Лотков Александр Иванович
  • Кашин Олег Александрович
  • Кузнецов Владимир Михайлович
  • Кудряшов Андрей Николаевич
  • Борисов Дмитрий Петрович
  • Круковский Константин Витальевич
  • Слабодчиков Владимир Андреевич
RU2633639C1
Способ изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr 2018
  • Севостьянов Михаил Анатольевич
  • Сергиенко Константин Владимирович
  • Баикин Александр Сергеевич
  • Насакина Елена Олеговна
  • Колмаков Алексей Георгиевич
  • Конушкин Сергей Викторович
  • Морозов Михаил Михайлович
  • Каплан Михаил Александрович
RU2694099C1
СПОСОБ ПОЛУЧЕНИЯ ПРУТКОВ И СПОСОБ ПОЛУЧЕНИЯ ТОНКОЙ ПРОВОЛОКИ ИЗ СПЛАВА СИСТЕМЫ НИКЕЛЬ-ТИТАН С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ 2013
  • Андреев Владимир Александрович
RU2536614C2
Способ температурно-деформационного воздействия на сплавы титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы 2015
  • Рыклина Елена Прокопьевна
  • Прокошкин Сергей Дмитриевич
  • Вачиян Кристина Александровна
  • Крейцберг Алена Юрьевна
RU2608246C1
СПОСОБ ОБРАБОТКИ СПЛАВОВ ТИТАН-НИКЕЛЬ С СОДЕРЖАНИЕМ НИКЕЛЯ 49-51 АТ.% С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ И ОБРАТИМЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ (ВАРИАНТЫ) 2011
  • Прокошкин Сергей Дмитриевич
  • Рыклина Елена Прокопьевна
  • Хмелевская Ирина Юрьевна
RU2476619C2
Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы 2017
  • Севостьянов Михаил Анатольевич
  • Сергиенко Константин Владимирович
  • Баикин Александр Сергеевич
  • Насакина Елена Олеговна
  • Колмаков Алексей Георгиевич
  • Конушкин Сергей Викторович
  • Морозов Михаил Михайлович
  • Каплан Михаил Александрович
  • Шатова Людмила Анатольевна
  • Леонов Александр Владимирович
RU2656626C1
Сплав на основе титана и способ его обработки для создания внутрикостных имплантатов с повышенной биомеханической совместимостью с костной тканью 2019
  • Конопацкий Антон Сергеевич
  • Дубинский Сергей Михайлович
  • Шереметьев Вадим Алексеевич
  • Прокошкин Сергей Дмитриевич
  • Браиловский Владимир Иосифович
RU2716928C1

Реферат патента 2009 года СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА

Изобретение относится к производству изделий из сплава на основе никелида титана преимущественно типа тонких прутков и проволоки, обладающих эффектом памяти формы. Способ осуществляют в два этапа. На первом этапе изделие нагревают до температуры 500-600°С, выдерживают в течение 3-10 минут, затем проводят деформирование растяжением со степенью не более 1% и охлаждение в деформированном состоянии. На втором этапе проводят нагрев изделия до температуры 250÷350°С, выдержку не более одной минуты, повторное деформирование растяжением со степенью не более 1% и охлаждение изделия с одновременной разгрузкой. Данный способ позволяет обеспечить строгую прямолинейность изделия, а также высокие значения псевдоупругости. Повышаются механические свойства и долговечность изделий. 1 табл.

Формула изобретения RU 2 374 356 C1

Способ термомеханической обработки изделия из сплава на основе никелида титана, отличающийся тем, что на первом этапе изделие нагревают до температуры 500÷600°С с выдержкой при этой температуре в течение 3÷10 мин, затем деформируют его при этой температуре растяжением со степенью не более 1% и охлаждают в деформированном состоянии до комнатной температуры, а на втором этапе изделие нагревают до температуры 250÷350°С с выдержкой при данной температуре в течение времени не более одной минуты, повторно деформируют изделие при данной температуре растяжением со степенью не более 1%, после чего его охлаждают до комнатной температуры с одновременной разгрузкой.

Документы, цитированные в отчете о поиске Патент 2009 года RU2374356C1

Способ обработки сплавов на основе никелид титана 1977
  • Хачин Владимир Николаевич
  • Гюнтер Виктор Эдуардович
  • Монасевич Леонид Абрамович
  • Паскаль Юрий Иванович
SU697600A1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СПЛАВОВ НА ОСНОВЕ НИКЕЛИДА ТИТАНА 1987
  • Ильин А.А.
  • Гозенко Н.Н.
  • Скворцов В.И.
  • Никитич А.С.
  • Коллеров М.Ю.
  • Качайник Е.О.
SU1431353A1
RU 2005137319 A, 27.04.2004
ТАНКЕР - СУДНО ДЛЯ НАЛИВНЫХ ГРУЗОВ (ВАРИАНТЫ) 2005
RU2286905C1
Фильтрующий материал для улавливания дымов, преимущественно аммонийных солей 1991
  • Конюхова Светлана Васильевна
  • Сутягина Тамара Федоровна
  • Пузанова Нина Васильевна
  • Кривова Галина Ивановна
  • Зеленова Людмила Витальевна
SU1792339A3

RU 2 374 356 C1

Авторы

Андреев Владимир Александрович

Бондарев Андрей Борисович

Хусаинов Михаил Андреевич

Тамбулатов Борис Яковлевич

Даты

2009-11-27Публикация

2008-04-28Подача