Изобретение относится к области обработки наноструктур.
Исследования углеродных нанотрубок (УНТ) как перспективных материалов-аккумуляторов водорода показывают, что важными факторами, определяющими количество водорода, запасаемого в УНТ, являются условия заполнения трубок водородом (температура, время и давление). С экономической точки зрения целесообразны невысокие температуры и давления при относительно небольшом времени заполнения.
Известен способ заполнения водородом УНТ, термохимически активированных обработкой в парах сульфида цинка [Патент РФ №2296046, опубл. 27.03.2007 г., бюл.9] - прототип. Способ изложен в описании изобретения, в примере, и состоит в заполнении УНТ водородом под давлением в 100 атм при температуре 25°С в течение 24 часов. Параметры такого процесса полностью соответствуют критерию экономической целесообразности. Недостатком способа является низкое содержание водорода в УНТ, не превышающее 4,1% (мас.).
Задачей настоящего изобретения является увеличение количества водорода, запасаемого при температуре 25°С за 24 часа в углеродных нанотрубках, прошедших термохимическую активацию в парах сульфида цинка.
Эта задача решается в предлагаемом способе заполнения углеродных нанотрубок водородом путем проведения процесса под давлением 78-80 атм.
Способ позволяет запасать в УНТ от 4,9 до 5,3% (мас.) водорода. Такое количество запасенного водорода не может быть объяснено физической адсорбцией водорода, а химическое взаимодействие его с УНТ при комнатной температуре маловероятно. В условиях предлагаемого способа предположительно происходит образование водородных кластеров между слоями УНТ, прошедших термохимическую активацию в парах сульфида цинка.
Параметры процесса выбраны экспериментально. При давлениях водорода ниже 78 и выше 80 атм количество водорода, запасенного в УНТ, резко падает, что подтверждается результатами, представленными в таблице.
Можно полагать, что при давлениях водорода ниже 78 атм не происходит образование водородных кластеров или их содержание мало. При давлениях водорода выше 80 атм вероятно происходит быстрое разрушение кластеров из-за нарушения структуры стенок УНТ, имеющих, вследствие взаимодействия с парами сульфида цинка в процессе термохимической активации, большее содержание оборванных связей в сравнении с нанотрубками, активированными другими методами или не подвергавшимися активации.
Пример 1:
УНТ, термохимически активированные в парах сульфида цинка, заполняют водородом под давлением 78 атм, при температуре 25°С в течение 24 часов. Затем измеряют волюметрическим методом количество водорода, выделившегося из УНТ при прогреве нанотрубок до 300°С. Полученное значение принимают за количество водорода, запасенное УНТ в процессе заполнения. Вычисленное из этих данных содержание водорода, запасенного в УНТ, составляет 4,9±0,7% (мас.).
Пример 2:
УНТ, термохимически активированные в парах сульфида цинка, заполняют водородом под давлением 79 атм, при температуре 25°С в течение 24 часов. Затем измеряют волюметрическим методом количество водорода, выделившегося из УНТ при прогреве нанотрубок до 300°С. Полученное значение принимают за количество водорода, запасенное УНТ в процессе заполнения. Вычисленное из этих данных содержание водорода, запасенного в УНТ, составляет 5,1±0,7% (мас.).
Пример 3:
УНТ, термохимически активированные в парах сульфида цинка, заполняют водородом под давлением 80 атм, при температуре 25°С в течение 24 часов. Затем измеряют волюметрическим методом количество водорода, выделившегося из УНТ при прогреве нанотрубок до 300°С. Полученное значение принимают за количество водорода, запасенное УНТ в процессе заполнения. Вычисленное из этих данных содержание водорода, запасенного в УНТ, составляет 5,3±0,7% (мас.).
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ УВЕЛИЧЕНИЯ СОРБЦИОННОЙ ЕМКОСТИ УГЛЕРОДНЫХ НАНОТРУБОК | 2006 |
|
RU2321536C1 |
СПОСОБ ЭЛЕКТРОДУГОВОГО ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК | 2008 |
|
RU2370434C1 |
СПОСОБ ЗАПОЛНЕНИЯ НАНОТРУБОК ТУГОПЛАВКИМИ МАЛОРАСТВОРИМЫМИ СОЕДИНЕНИЯМИ | 2014 |
|
RU2569693C1 |
СПОСОБ ОБРАБОТКИ УГЛЕРОДНЫХ НАНОТРУБОК | 2005 |
|
RU2296046C1 |
СПОСОБ БЕЗОБЖИГОВОГО ОКУСКОВАНИЯ МЕТАЛЛСОДЕРЖАЩИХ ПЫЛЕЙ И ШЛАМОВ | 2010 |
|
RU2473706C2 |
СПОСОБ ЗАПОЛНЕНИЯ ВНУТРЕННЕЙ ПОЛОСТИ НАНОТРУБОК ХИМИЧЕСКИМ ВЕЩЕСТВОМ | 2012 |
|
RU2511218C1 |
КАТАЛИЗАТОР ДЛЯ СИНТЕЗА УГЛЕВОДОРОДОВ ИЗ СО И H И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2009 |
|
RU2414296C1 |
МНОГОЭЛЕМЕНТНЫЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОНДЕНСАТОР И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2010 |
|
RU2419907C1 |
КАТАЛИТИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ВОДОРОДА | 2021 |
|
RU2796402C1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ НЕПРЕРЫВНОГО ПРОИЗВОДСТВА НАНОДИСПЕРСНЫХ МАТЕРИАЛОВ | 2008 |
|
RU2397139C1 |
Изобретение относится к области обработки наноструктур. Сущность изобретения: в способе заполнения водородом углеродных нанотрубок, прошедших термохимическую активацию в парах сульфида цинка, заполнение проводят при температуре 25°С в течение 24 часов под давлением водорода 78-80 атм. Техническим результатом изобретения является увеличение количества водорода, запасаемого в нанотрубках. 1 табл.
Способ заполнения водородом углеродных нанотрубок, прошедших термохимическую активацию в парах сульфида цинка, под давлением водорода при температуре 25°С в течение 24 ч, отличающийся тем, что заполнение проводится под давлением водорода 78-80 атм.
СПОСОБ ОБРАБОТКИ УГЛЕРОДНЫХ НАНОТРУБОК | 2005 |
|
RU2296046C1 |
ФУНКЦИОНАЛИЗОВАННЫЕ НАНОТРУБКИ | 1997 |
|
RU2200562C2 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК | 1998 |
|
RU2146648C1 |
L.Ci at all | |||
Annealing amorphous carbon nanotubes for their application in hydrogen storage | |||
Applied Surface Science, 2003, v.205, p.39-43 | |||
US 6277318 B1, 21.08.2001 | |||
Топчак-трактор для канатной вспашки | 1923 |
|
SU2002A1 |
Авторы
Даты
2010-01-20—Публикация
2008-09-24—Подача