Группа изобретений относится к микро- и нанотехнологии и может быть использована при получении полупроводниковой сэндвич-структуры 3С-SiC/Si для изготовления диодов и мембранных элементов микромеханических приборов.
Известна полупроводниковая сэндвич-структура 3С-SiC/Si, содержащая подложку из монокристаллического кремния и эпитаксиальный слой карбида кремния, между которыми расположен посредник - с-ВР. Такую структуру получают путем химического осаждения слоя с-ВР, синтезированного из газовой смеси диборана и фосфина, на подложку с последующим химическим осаждением SiC из монометилсилана или из пропан-силановой смеси (WO/2003/023095, С30В 25/02, H01L 21/04, 2003; US 20040053438, H01L 21/00, H01L 21/20, H01L 21/336, 2004).
Однако данная структура и способ ее получения нетехнологичны, причем формирование и нанесение посредника - с-ВР - не только усложняют технологию, но и могут приводить к загрязнению целевого продукта атомами фосфора и бора.
Известна также полупроводниковая сэндвич-структура 3С-SiC/Si, содержащая подложку из монокристаллического, поликристаллического или аморфного кремния, на поверхности которой сформирован слой карбида кремния высокотемпературным химическим осаждением в реакционной камере магнетрона высокочастотного (от 10 МГц до 10 ГГц) напряжения из плазмы высокого давления с использованием реакционной смеси водорода и углеродсодержащего газа (WO/2007/055377, H01L 21/205, С30В 29/36, 2007).
Однако способ получения целевого продукта здесь является сложным из-за необходимости создания высокочастотного разряда для образования плазмы высокого давления. Кроме того, слой SiC в целевом продукте имеет незначительную и нерегулируемую толщину, поскольку в плазме присутствует лишь углеродсодержащий компонент. В этом случае после нанесения на подложку сплошного слоя SiC процесс диффузии атомов кремния из подложки прекращается, в связи с чем дальнейшее нанесение SiC невозможно из-за отсутствия источника атомов кремния.
В уровень техники входит также полупроводниковая сэндвич-структура 3С-SiC/Si, содержащая подложку из монокристаллического кремния с ориентацией (110), на которую нанесена монокристаллическая пленка 3С-SiC ориентации (111) через посредник - слой SiC, включающий атомы водорода в концентрации ≥1019 atoms/cm3. Такую структуру получают низкотемпературным осаждением из газовой фазы кремнийорганического соединения на поверхность подложки из монокристаллического кремния с ориентацией (110) слоя карбида кремния, включающего атомы водорода в концентрации ≥1019 atoms/cm3, а затем слоя 3С-SiC ориентации (111) (JP 2006253617, H01L 21/205, H01L 21/20, H01L 21/02, 2006).
Однако в целевом продукте, полученном данным способом, невозможно регулировать технические характеристики (кристаллическую структуру, подвижность носителей зарядов и др.) из-за неуправляемости соотношением атомов Si и С в газовой фазе используемого кремнийорганического соединения на стадии низкотемпературного осаждения.
Еще одна группа аналогов касается получения полупроводниковой сэндвич-структуры 3С-SiC/Si, содержащей подложку из монокристаллического кремния с базовой ориентацией (111), на которую нанесен слой карбида кремния. Целевой продукт здесь получают синтезом пленки карбида кремния на поверхности кремниевой подложки под нагревом с использованием углерода, осаждаемого из углеродсодержащего материала сначала при условиях, не обеспечивающих образования карбида кремния, а затем при условиях, обеспечивающих синтез карбида кремния (RU 2286617, H01L 21/205, 2006; RU 2286616, H01L 21/205, 2006).
Однако слой SiC, получаемый в данном способе, имеет незначительную толщину (как указано в источниках информации, толщина слоя SiC составляет до 1 мкм, хотя, по нашим данным, на равна 0,2 мкм). Это приводит к сужению области использования целевого продукта, например, невозможности его использования в СВЧ системах, требующих не менее 10 мкм. Увеличить толщину слоя SiC в данной технологии невозможно из-за формирующегося сплошного слоя SiC, препятствующего диффузии атомов Si из подложки, при этом дальнейшее нанесение SiC невозможно из-за отсутствия источника атомов кремния. Кроме того, недостаток данного аналога заключается в поликристаллической структуре нанесенной пленки SiC, как это проиллюстрировано в его описании.
Из приведенного обзора аналогов видно, что технические характеристики целевого продукта зависят от способа его получения. Это относится также и к прототипу целевого продукта.
Наиболее близкой к заявляемой является полупроводниковая сэндвич-структура 3С-SiC/Si, содержащая последовательно расположенные подложку из монокристаллического кремния с базовой ориентацией (100), слой нано-пористого кремния толщиной от 0,3 до 100 мкм, сформированный с помощью химического или электрохимического травления подложки, и слой карбида кремния. Такую структуру получают формированием слоя нано-пористого кремния на поверхности подложки из монокристаллического кремния с базовой ориентацией (100) химическим травлением подложки реакционной смесью, содержащей водный раствор HF с добавлением окислителя - НNО3, с последующей карбидизацией нанопористого слоя и химическим осаждением слоя 3С-SiC из газовой фазы, включающей SiH4, C3H8 и H2 (JP 2006045036, С30В 29/36, С30В 29/38, H01L 21/205, С23С 16/24, С30В 29/10, H01L 21/02, С23С 16/22, 2006).
Однако слой карбида кремния в подавляющем большинстве прототипных образцов обладает низким структурным совершенством: он является, как правило, поликристаллическим, текстурированным или блочным, что имеет следствием ухудшение его электрофизических характеристик (низкие значения обратного пробивного напряжения и подвижности носителей зарядов в целевом продукте).
Технической задачей группы изобретений, касающихся полупроводниковой сэндвич-структуры 3С-SiC/Si и способа ее получения, является повышение обратного пробивного напряжения и подвижности носителей зарядов в целевом продукте за счет повышения надежности получения структурно совершенного слоя карбида кремния.
Решение указанной технической задачи в части структуры заключается в том, что в полупроводниковой сэндвич-структуре 3С-SiC/Si, содержащей последовательно расположенные подложку из монокристаллического кремния с базовой ориентацией (100), слой нанопористого кремния, сформированный с помощью химического травления подложки, и слой карбида кремния, слой нанопористого кремния сформирован толщиной 50-180 нм, при этом слой карбида кремния нанесен с замещением водорода на углерод в поверхностных связях Si-H слоя пористого кремния.
Решение указанной технической задачи в части способа заключается в том, что в способ получения полупроводниковой сэндвич-структуры 3С-SiC/Si, предусматривающий формирование слоя нанопористого кремния на поверхности подложки из монокристаллического кремния с базовой ориентацией (100) путем химического травления подложки реакционной смесью, содержащей водный раствор HF, с последующей карбидизацией нанопористого слоя и химическим осаждением слоя 3C-S1C из газовой фазы, включающей SiH4, С3Н8 и H2, вносятся следующие изменения:
1) слой пористого кремния формируют толщиной 50-180 нм;
2) реакционная смесь, используемая на стадии химического травления подложки, дополнительно содержит NaNO2 при следующем соотношении компонентов, мас.%:
3) соотношение компонентов газовой фазы, используемой для химического осаждения слоя 3С-SiC составляет, объем.%:
Причинно-следственная связь между внесенными изменениями и достигнутым техническим результатом заключается в следующем. Замена окислителя (NaNO2 вместо HNO3) в составе реакционной смеси позволяет проводить более «мягкое» травление подложки, что важно для контроля процесса порообразования, а также обеспечения возможности пассивации водородом оборванных кремниевых связей. Новое соотношение ростообразующих компонентов в газовой фазе, используемой для химического осаждения слоя 3С-SiC, позволяет значительно улучшить структуру данного слоя и обеспечить скорость его роста до 30 нм/мин. Другие отличия - гидрогенизация поверхности нанопористого слоя и уменьшение его толщины до 50-180 нм - обеспечивают понижение плотности центров кристаллизации, что имеет следствием улучшение электрофизических характеристик целевого продукта, а именно, повышение обратного пробивного напряжения гетероструктуры и увеличение подвижности основных носителей заряда в слое.
В отношении преимущественной области использования предлагаемой полупроводниковой структуры - для изготовления чувствительного элемента мембранного типа в микромеханических приборах - уровень техники характеризуется следующими аналогами:
1. Чувствительный элемент мембранного типа, содержащий подложку из монокристаллического кремния с базовой ориентацией (100), мембрану, изготовленную из нитрида кремния и расположенную над отверстием, выполненным в подложке для образования мембранной камеры, и оптический узел съема информативного сигнала, в качестве которого установлен интерферометр, регистрирующий величину прогиба мембраны под действием приложенного давления (D.Maier-Schneider, J.Maibach, E. Obermeier. Computeraided characterization of the elastic properties of thin films // Journal of Micromechanics and Microengineering, Vol.2, 1992, p.173-175).
Такой элемент обладает низкой чувствительностью к давлению.
2. Чувствительный элемент мембранного типа, содержащий подложку из монокристаллического кремния с базовой ориентацией (100), двухслойную мембрану, включающую слой нитрида кремния и компенсирующий слой нитрида алюминия, расположенную над отверстием, выполненным в подложке для образования подмембранной камеры, и узел съема информативного сигнала (RU 2327252, H01L 29/84, 2008).
Его недостатками являются низкая химическая стойкость слоя нитрида алюминия, что усложняет, в частности, технологию изготовления целевого изделия.
3. Чувствительный элемент мембранного типа, содержащий подложку из монокристаллического кремния с базовой ориентацией (100), двухслойную мембрану, первый слой которой сформирован из нитрида кремния, а второй (компенсирующий) слой - из карбида кремния. Мембрана расположена над отверстием, выполненным в подложке для образования подмембранной камеры. Целевое изделие оснащено тензометрическим или оптическим узлом съема информативного сигнала для подключения к внешней электрической цепи. Здесь компенсирующий SiC-слой мембраны уменьшает ее начальное внутреннее напряжение, что имеет следствием повышение чувствительности целевого изделия. Данный эффект наблюдается в диапазоне толщин SiC- и Si3N4-пленок, обеспечивающих функционирование нанесенной композиции SiC/Si3N4 как мембраны (RU 2247443, H01L 29/84, 2005 - прототип мембраны).
Однако слой Si3N4 мембраны обладает высокими механическими напряжениями, что имеет следствием низкую чувствительность целевого изделия к давлению. Данное изделие является сложным в отношении конструкции и изготовления из-за наличия слоев из разных материалов. Кроме того, оно не обладает универсальностью применения, поскольку является пассивным, в связи с чем не может использоваться для преобразования внешнего электрического сигнала в перемещение, например, в микроактюаторах и, особенно, в комбинированных технических системах, в которых мембрана попеременно выполняет измерительную и исполнительную функцию.
Технической задачей усовершенствования чувствительного элемента мембранного типа является повышение его чувствительности к давлению и упрощение конструкции.
Для решения этой технической задачи в конструкцию чувствительного элемента мембранного типа, содержащего подложку из монокристаллического кремния с базовой ориентацией (100), на рабочей поверхности которой последовательно сформированы компенсирующий слой и слой карбида кремния, а с тыльной стороны подложки выполнено глухое отверстие для образования мембранной камеры, и узел съема информативного сигнала, вносятся следующие изменения:
1) компенсирующий слой сформирован толщиной 50÷180 нм из нанопористого кремния химическим травлением рабочей поверхности подложки;
2) толщина слоя карбида кремния составляет 0,4÷0,6 мкм.
Такой чувствительный элемент, очевидно, может быть изготовлен с использованием предлагаемой полупроводниковой сэндвич-структуры 3С-SiC/Si, где толщина слоя карбида кремния составляет 0,4÷0,6 мкм. Для этого с тыльной стороны подложки выполняют глухое отверстие для образования мембранной камеры и оснащают мембранный элемент узлом съема информативного сигнала, например, оптоволоконным интерферометром Фабри-Перро. Возможно выполнение узла съема информативного сигнала (либо узла управления) с использованием тензорезистивных свойств выполненного слоя карбида кремния.
Упрощение конструкции чувствительного элемента достигнуто тем, что слои мембраны выполнены из одного материала - карбида кремния различной модификации, а повышение чувствительности целевого изделия к давлению обеспечено структурным совершенством выращенного монокристаллического слоя карбида кремния, поскольку монокристаллический слой обладает минимальными остаточными механическими напряжениями.
На фиг.1 представлена схема полупроводниковой сэндвич-структуры 3С-SiC/Si; на фиг.2 приведена схема диода на основе данной полупроводниковой структуры; на фиг.3 даны схемы вариантов мембранного узла микромеханического прибора, изготовленных с использованием данной полупроводниковой структуры; на фиг.4 приведена схема чувствительного элемента мембранного типа, изготовленного с использованием данной полупроводниковой структуры. В табл.1 приведены технические характеристики полупроводниковой сэндвич-структуры 3С-SiC/Si; в табл.2 приведены структурные и электрофизические характеристики полупроводниковой сэндвич-структуры 3С-SiC/Si при различном соотношении режимных параметров ее получения;
в табл.3 приведены сравнительные характеристики предлагаемого и прототипного чувствительных элементов мембранного типа.
Полупроводниковая сэндвич-структура 3С-SiC/Si (фиг.1) содержит последовательно расположенные подложку 1, выполненную из монокристаллического кремния с базовой ориентацией (100), слой нанопористого кремния 2 толщиной 50-180 нм, сформированный с помощью химического травления подложки, и слой карбида кремния 3, нанесенный с замещением водорода на углерод в поверхностных связях Si-H слоя пористого кремния. В случае использования данной полупроводниковой сэндвич-структуры в качестве диода на ее верхнюю и нижнюю поверхности нанесены металлизированные покрытия 4 и 5 соответственно, служащие для подключения целевого изделия к внешней электрической цепи (фиг.2). При этом выпрямляющие свойства структуры обеспечиваются различным уровнем легирования и различной электропроводностью слоев 3С-SiC и Si.
В оптимальном варианте полупроводниковая сэндвич-структура 3С-SiC/Si может быть получена следующим образом. На поверхности подложки из монокристаллического кремния с базовой ориентацией (100) толщиной 400 мкм формируют слой нанопористого кремния толщиной 150 нм химическим травлением подложки реакционной смесью, содержащей водный раствор HF и NaNO2 при следующем соотношении ингредиентов:
Данную операцию проводят в течение 15 мин при температуре 40°С.
Далее проводят карбидизацию слоя нанопористого кремния путем замещения водорода на углерод в поверхностных связях Si-H слоя пористого кремния термообработкой в пропано-водородной смеси (содержание пропана 0,1 объем. %) при температуре 1300°С в течение 3 мин.
Затем производят химическое осаждение монокристаллического слоя 3С-SiC толщиной 0,6 мкм из газовой фазы, включающей SiH4, С3Н8 и Н2 при следующем соотношении компонентов, объем.%:
Н2 - остальное.
Операцию ведут в течение 40 мин при температуре 1350°С.
Полученный целевой продукт имеет следующие электрофизические характеристики: концентрация носителей заряда 7,8·1017 см-3, обратное пробивное напряжение 210 В; подвижность основных носителей зарядов 280 см2В·с.
По результатам испытания образцов предлагаемой полупроводниковой сэндвич-структуры 3С-SiC/Si с толщиной слоя нанопористого кремния 50÷180 нм и толщиной слоя 3С-SiC в диапазоне 0,2÷0,8 мкм при средних значениях концентраций компонентов на стадиях химического травления подложки (HF 35 мас.%; NaNO2 0,15 мас.%) и химического осаждения слоя 3С-SiC (SiH4 0,8 объем.%; С3Н8 1,0 объем.%) все предлагаемые образцы имеют монокристаллическую структуру слоя SiC при следующих значениях электрофизических характеристик: концентрация носителей заряда 7,8·1017÷2,9·1018см-3; обратное пробивное напряжение 107÷210 В; подвижность основных носителей зарядов 115÷280 см2/В·с. В то же время 83,4% прототипных изделий обладают блочной структурой слоя SiC при следующих значениях электрофизических характеристик: обратное пробивное напряжение 55÷78 В; подвижность основных носителей зарядов 74÷108 см2/В·с (табл.1).
По результатам испытания образцов предлагаемой полупроводниковой сэндвич-структуры 3С-SiC/Si с толщиной слоя нанопористого кремния 100 им и толщиной слоя 3С-SiC, равной 0,5 мкм, в диапазонах значений концентраций компонентов на стадиях химического травления подложки: HF 20÷49 мас.%; NaNO2 0,02÷0,30 мас.% и химического осаждения слоя 3С-SiC: SiH4 0,6÷1,0 объем. %; С3Н8 0,8÷1,2 объем.% все предлагаемые образцы имеют монокристаллическую структуру слоя SiC при следующих значениях электрофизических характеристик: концентрация носителей заряда 7,8·1017÷2,9·1018 см-3; обратное пробивное напряжение 125÷210 В; подвижность основных носителей зарядов 175÷280 см2/В·с. В то же время 83,4% прототипных изделий обладают блочной структурой слоя SiC при следующих значениях электрофизических характеристик: обратное пробивное напряжение 55÷78 В; подвижность основных носителей зарядов 74÷108 см2/В·с. При этом скорость химического травления подложки для образования слоя пористого кремния в предлагаемом способе составляет 6÷24 нм/мин, а скорость химического осаждения слоя 3С-SiC составляет 23÷30 нм/мин, что в 2÷24 раза выше, чем в прототипе (табл.2).
Чувствительный элемент мембранного типа (фиг.3), изготовленный с использованием предлагаемой полупроводниковой сэндвич-структуры 3С-SiC/Si, содержит подложку 1, выполненную из монокристаллического кремния с базовой ориентацией (100), на рабочей поверхности которой последовательно сформированы компенсирующий слой 2 толщиной 50÷180 нм, выполненный из нанопористого кремния химическим травлением рабочей поверхности подложки, и слой 3 карбида кремния толщиной 0,4÷0,6 мкм. С тыльной стороны подложки 1 выполнено глухое отверстие 6 для образования мембранной камеры. В вариантах данной конструкции мембрана может быть выполнена трехслойной (фиг.3а), содержащей слои 2, 3 и кремниевое основание 7 мембраны, образовавшееся в результате неполного травления тыльной стороны подложки 1, или однослойной (фиг.3б) - только из слоя 3 (при полном травлении подложки, включая слой 2 нанопористого кремния). Чувствительный элемент оснащен узлом съема информативного сигнала. В варианте фиг.4 в качестве узла съема информативного сигнала установлен торцевой волоконно-оптический интерферометр 8 Фабри-Перро, включающий оптическое волокно 9, лазерный диод 11, фотоприемник 12 и волоконно-оптический ответвитель 10, установленный с возможностью регистрации величины прогиба мембраны под действием приложенного к ней давления Р.
При подаче давления на мембрану происходит ее прогиб, который регистрируется интерферометром 8.
Чувствительный элемент мембранного типа может быть изготовлен химическим анизотропным травлением на тыльной стороне подложки 1 полупроводниковой сэндвич-структуры 3С-SiC/Si (фиг.1) с толщиной слоя карбида кремния, равной 0,4÷0,6 мкм, глухого отверстия с помощью 33 мас.% раствора КОН при 85°С. Далее первичный преобразователь оснащают узлом съема информативного сигнала.
Изготовленные таким образом чувствительные элементы мембранного типа в варианте фиг.3б имеют следующие технические характеристики (табл.3): остаточное механическое напряжение 0,008÷0,028 ГПа; чувствительность 13÷16 нм/Па против 0,1÷0,3 ГПа и 1,5÷3,5 нм/Па в прототипном устройстве соответственно. Наиболее высокие значения чувствительности и минимальные значения остаточного механического напряжения наблюдаются по мере уменьшения толщины слоя SiC, однако при толщине этого слоя 0,2 мкм и менее образцы разрушаются в процессе вытравливания подмембранной камеры. При верхнем запредельном значении толщины слоя SiC, равном 1 мкм, чувствительность целевого изделия снижается на порядок.
Таким образом, при использовании группы заявленных изобретений по сравнению с их аналогами достигаются следующие технические результаты:
- повышение обратного пробивного напряжения (125÷210 В) и подвижности носителей зарядов (175÷280 см2/В·с) в полупроводниковой сэндвич-структуре 3С-SiC за счет повышения надежности получения структурно совершенного слоя карбида кремния, что проиллюстрировано в табл.1 и 2;
- повышение на порядок чувствительности к давлению мембраны, выполненной с использованием предлагаемой полупроводниковой сэндвич-структуры 3С-SiC, что проиллюстрировано в табл.3;
- упрощение конструкции и технологии изготовления чувствительного элемента мембранного типа, выполненного на основе предлагаемой полупроводниковой сэндвич-структуры 3С-SiC, что подтверждается возможностью однослойного выполнения мембраны, а также наличием только одной основной операции (вытравливания подмембранной камеры) в технологическом процессе ее изготовления.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ СВЧ ПЛАЗМЕННОГО ФОРМИРОВАНИЯ ПЛЕНОК КУБИЧЕСКОГО КАРБИДА КРЕМНИЯ НА КРЕМНИИ (3С-SiC) | 2013 |
|
RU2538358C1 |
Изделие с покрытием из карбида кремния и способ изготовления изделия с покрытием из карбида кремния | 2018 |
|
RU2684128C1 |
Карбидокремниевый пленочный функциональный элемент прибора и способ его изготовления | 2023 |
|
RU2816687C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО СЛОЯ ГЕТЕРОСТРУКТУРЫ КАРБИДА КРЕМНИЯ НА ПОДЛОЖКЕ КРЕМНИЯ | 2016 |
|
RU2653398C2 |
Функциональный элемент полупроводникового прибора | 2020 |
|
RU2730402C1 |
Функциональный элемент полупроводникового прибора и способ его изготовления | 2022 |
|
RU2787939C1 |
Способ изготовления гетероэпитаксиальных слоев III-N соединений на монокристаллическом кремнии со слоем 3C-SiC | 2020 |
|
RU2750295C1 |
СПОСОБ САМООРГАНИЗУЮЩЕЙСЯ ЭНДОТАКСИИ МОНО 3C-SiC НА Si ПОДЛОЖКЕ | 2005 |
|
RU2370851C2 |
Фоточувствительное устройство и способ его изготовления | 2018 |
|
RU2685032C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЯ, СОДЕРЖАЩЕГО КРЕМНИЕВУЮ ПОДЛОЖКУ С ПЛЕНКОЙ ИЗ КАРБИДА КРЕМНИЯ НА ЕЕ ПОВЕРХНОСТИ | 2007 |
|
RU2352019C1 |
Группа изобретений относится к микро- и нанотехнологии и может быть использовано при изготовлении микромеханических приборов. Сущность изобретения: полупроводниковая сэндвич-структура 3С-SiC/Si содержит последовательно расположенные кремниевую подложку с базовой ориентацией (100), слой нанопористого кремния толщиной 50÷180 нм, сформированный с помощью химического травления подложки, и слой 3С-SiC, нанесенный с замещением водорода на углерод в поверхностных связях Si-H слоя пористого кремния. Предложены также способ получения полупроводниковой сэндвич-структуры и чувствительный элемент мембранного типа с ее использованием. Техническим результатом изобретения является повышение обратного пробивного напряжения и подвижности носителей зарядов в полупроводниковой сэндвич-структуре за счет повышения надежности получения структурно совершенного слоя карбида кремния. 3 н.п. ф-лы, 4 ил., 3 табл.
1. Полупроводниковая сэндвич-структура 3С-SiC/Si, содержащая последовательно расположенные подложку из монокристаллического кремния с базовой ориентацией (100), слой нанопористого кремния, сформированный с помощью химического травления подложки, и слой карбида кремния, отличающаяся тем, что слой нанопористого кремния сформирован толщиной 50-180 нм, при этом слой карбида кремния нанесен с замещением водорода на углерод в поверхностных связях Si-H слоя пористого кремния.
2. Способ получения полупроводниковой сэндвич-структуры 3С-SiC/Si, предусматривающий формирование слоя нанопористого кремния на поверхности подложки из монокристаллического кремния с базовой ориентацией (100) путем химического травления подложки реакционной смесью, содержащей водный раствор HF, с последующей карбидизацией нанопористого слоя и химическим осаждением слоя 3С-SiC из газовой фазы, включающей SiH4, C3H8 и Н2, отличающийся тем, что слой пористого кремния формируют толщиной 50-180 нм, при этом используемая для химического травления реакционная смесь дополнительно содержит NaNO2 при следующем соотношении компонентов, мас.%:
HF 20÷49
NaNO2 0,02÷0,30
деионизованная вода остальное
карбидизацию слоя нанопористого кремния проводят замещением водорода на углерод в поверхностных связях Si-H слоя пористого кремния, а соотношение компонентов газовой фазы, используемой для химического осаждения слоя 3С-SiC, составляет, об.%:
SiH4 0,6-1,0
С3Н8 0,8-1,2
Н2 остальное
3. Чувствительный элемент мембранного типа с использованием полупроводниковой сэндвич-структуры 3С-SiC/Si по п.1 формулы, содержащий подложку из монокристаллического кремния с базовой ориентацией (100), на рабочей поверхности которой последовательно сформированы компенсирующий слой и слой карбида кремния, а с тыльной стороны подложки выполнено глухое отверстие для образования мембранной камеры и узел съема информативного сигнала, отличающийся тем, что компенсирующий слой сформирован толщиной 50-180 нм из нанопористого кремния, полученного химическим травлением рабочей поверхности подложки и последующей карбидизацией с замещением водорода на углерод в поверхностных связях Si-H слоя пористого кремния, а толщина слоя карбида кремния составляет 0,4-0,6 мкм.
JP 2006045038 A, 16.02.2006 | |||
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЯ, СОДЕРЖАЩЕГО КРЕМНИЕВУЮ ПОДЛОЖКУ С ПЛЕНКОЙ ИЗ КАРБИДА КРЕМНИЯ НА ЕЕ ПОВЕРХНОСТИ | 2005 |
|
RU2286617C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО УГЛЕРОДНОГО ИЗДЕЛИЯ И ПОРИСТОЕ УГЛЕРОДНОЕ ИЗДЕЛИЕ, ПОЛУЧЕННОЕ ЭТИМ СПОСОБОМ | 1997 |
|
RU2151737C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ МЕМБРАНЫ С НАНОПОРИСТЫМ УГЛЕРОДОМ | 2004 |
|
RU2280498C2 |
US 2005263754 A1, 01.12.2005 | |||
WO 2007147670 A1, 27.12.2007 | |||
JP 2006253617 A, 21.09.2006 | |||
Способ приготовления мыла | 1923 |
|
SU2004A1 |
Авторы
Даты
2010-07-27—Публикация
2008-10-06—Подача