ЗАКАЛЕННАЯ МАРТЕНСИТНАЯ СТАЛЬ, СПОСОБ ПОЛУЧЕНИЯ ДЕТАЛИ ИЗ ЭТОЙ СТАЛИ И ПОЛУЧАЕМАЯ ТАКИМ СПОСОБОМ ДЕТАЛЬ Российский патент 2010 года по МПК C22C38/52 C21D8/00 C21D6/00 

Описание патента на изобретение RU2400557C2

Изобретение относится к мартенситной стали, закаленной с помощью дуплексной системы, т.е. путем осаждения интерметаллических соединений и карбидов, получаемой благодаря составу стали и состаривающей термообработке.

Эта сталь должна иметь:

- очень высокую механическую прочность, но в то же время повышенные пластичность и ковкость, иначе говоря, малую склонность к хрупкому разрушению, причем эта высокая прочность должна сохраняться при нагреве, т.е. при температурах порядка 400°С,

- хорошие усталостные свойства, что подразумевает, в частности, отсутствие вредных включений, таких как TiN и оксидов; эта характеристика должна быть получена при подходящем составе и тщательном соблюдении условий производства жидкого металла.

Кроме того, сталь должна быть цементируемой и способной азотироваться в такой степени, чтобы можно было повышать прочность ее поверхности с целью придания ей высокой стойкости к истиранию.

Главным предполагаемым применением для такой стали является изготовление трансмиссионных валов, в частности для авиационных двигателей.

Необходимость очень высокой механической прочности при нагреве мешает использовать для применения с этой целью углеродистые стали, прочность которых утрачивается, начиная с 200°С. Обычно используют мартенситостареющие стали, которые обладают удовлетворительной прочностью вплоть до 350-400°С. Выше происходит отпуск, который меняет их структуру.

В документе US-A-5393388 был предложен состав стали, направленный на повышение стойкости к нагреву и в особенности к улучшению усталостных свойств, ковкости и пластичности. Недостатком этого состава является то, что он требует повышенного содержания Со (от 8 до 16%), что делает сталь очень дорогой.

Целью изобретения является предложение стали, которая могла бы быть использована, в частности, для изготовления механических деталей, таких как трансмиссионные валы или структурные элементы, обладала бы еще более высокой механической прочностью при нагреве, но при этом одновременно и подходящими для указанных применений характеристиками усталости и хрупкости. Такая сталь, кроме того, должна была бы иметь более низкую производственную себестоимость по сравнению с наиболее высококачественными из известных сталей, применяемых для указанных целей.

Для осуществления поставленной задачи изобретение предлагает сталь, которая отличается тем, что она имеет следующий состав (в % масс.):

С=0,18-0,30%

Со=5-7%

Cr=2-5%

Al=1-2%

Mo+W/2=1-4%

V = следы - 0,3%

Nb = следы - 0,1%

В = следы - 50 ч/млн

Ni = 10,5-15% при Ni≥7+3,5Al

Si = следы - 0,4%

Mn = следы - 0,4%

Са = следы - 500 ч/млн

редкие земли = следы - 500 ч/млн

Ti = следы - 500 ч/млн

О = следы - 200 ч/млн, если сталь получена с помощью порошковой металлургии, или следы - 50 ч/млн, если сталь получена в производственном процессе из жидкого металла на воздухе или в вакууме

N = следы - 100 ч/млн

S = следы - 50 ч/млн

Cu = следы - 1%

Р = следы - 200 ч/млн

остальное железо и неизбежные примеси.

Предпочтительно сталь содержит С=0,20-0,25%

Предпочтительно сталь содержит Cr=2-4%

Предпочтительно сталь содержит Al=1-1,6%, еще более предпочтительно 1,4-1,6%

Предпочтительно сталь содержит Мо=≥1%

Предпочтительно сталь содержит Mo+W/2=1-2%

Предпочтительно сталь содержит V=0,2-0,3%

Предпочтительно сталь содержит Nb = следы - 0,05%

Предпочтительно сталь содержит Si = следы - 0,25%, еще более предпочтительно следы - 0,10%

Предпочтительно сталь содержит Mn = следы - 0,25%, еще более предпочтительно следы - 0,10%

Предпочтительно сталь содержит Ti = следы - 100 ч/млн

Предпочтительно сталь содержит О = следы - 10 ч/млн

Предпочтительно сталь содержит N = следы - 50 ч/млн, еще более предпочтительно следы - 10 ч/млн

Предпочтительно сталь содержит S = следы - 10 ч/млн, еще более предпочтительно следы - 5 ч/млн

Предпочтительно сталь содержит Р = следы - 100 ч/млн

Предпочтительно, температура мартенситного перехода Ms выше или равна 140°С при условии Ms=550-350×С%-40×Mn%-17×Cr%-10×Мо%-17×Ni%-8×W%-35×V%-10×Cu%-10×Со%+30×А1% (°С).

Целью изобретения является также способ изготовления стальных деталей, отличающийся тем, что он включает в себя следующие стадии, предшествующие окончательной обработке детали с приданием ей завершающей формы:

- приготовление стали, имеющей указанный выше состав;

- ковка этой стали;

- размягчающий отпуск при 600-675°С в течение от 4 до 20 час с последующим охлаждением на воздухе;

- перевод в раствор при 900-1000°С в течение по меньшей мере 1 часа с последующим охлаждением в масле и на воздухе достаточно быстрым, чтобы избежать выпадение в аустенитной матрице межгранульных карбидов;

- необязательно криогенная обработка при -50°С или ниже, предпочтительно при -80°С или ниже, с целью превращения всего аустенита в мартенсит; и при этом температура на 200°С или более ниже Ms, причем по меньшей мере одна из указанных обработок длится не менее 2 час;

- необязательно размягчающая обработка упрочненного при закалке мартенсита, проводимая в течение 4-16 час при 150-250°С, с последующим охлаждением на спокойном воздухе;

- упрочнение старением при 475-600°С, предпочтительно при 490-525°С, в течение 5-20 час.

Деталь может быть также подвергнута азотированию или цементации.

Предметом изобретения является также механическая деталь или деталь структурного элемента, отличающаяся тем, что ее изготовляют с использованием указанного выше способа.

Этой деталью может быть трансмиссионный вал двигателя, устройство для подвешивания двигателя, элемент шасси самолета и т.д.

Как станет ясно из дальнейшего описания, в основе изобретения лежит прежде всего состав стали, который отличается от состава предшествующего уровня техники более низким содержанием Со. Соответственным образом корректируются содержания и других элементов сплава, в частности содержания Al, Mo, W, Ni. При этом предлагается и оптимизированная термическая обработка.

Эти стали обладают пластическим смещением (разницей между пределом прочностью на разрыв Rm и пределом прочности на растяжение Rp0.2), промежуточным между значениями пластического смещения для углеродистых и мартенситостареющих сталей. У последних пластическое смещение очень мало, что обеспечивает повышенный предел упругости, но сопровождающийся быстрым разрывом при его превышении. С этой точки зрения, стали изобретения обладают свойствами, которые могут регулироваться пропорциями упрочняющих фаз и/или углерода.

Сталь изобретения может обрабатываться резкой в закаленном состоянии с помощью инструментов, адаптированных для твердости 45HRC. Эта сталь является промежуточной между мартенситостареющими сталями (обрабатываемыми в виде закаленных заготовок, поскольку они содержат мягкий мартенсит с низким содержанием углерода) и углеродистыми сталями, которые должны обрабатываться в отожженном состоянии.

Изобретение основано на достижении упрочнения, осуществленном одновременно с помощью интерметаллидов типа β-NiAl и карбидов типа М2С, и присутствии вторичного аустенита, образующегося при упрочнении старением, который придает мартенситу ковкость, благодаря образованию сэндвичевой структуры (несколько % вторичного аустенита между обкладками мартенсита).

Следует избегать образования нитридов, в частности нитридов Ti и Al, которые придают хрупкость: по этой причине исключают любое добавление Ti (разрешенный максимум 500 ч/млн, еще лучше 100 ч/млн) и по возможности ограничивают N, который связывают с целью предотвращения образования AlN.

Карбиды М2С, где М=Cr, Mo, W и V, содержащие очень мало Fe, являются предпочтительными благодаря их упрочняющим и неохрупчивающим свойствам. Они стабилизируются с помощью Mo и W. Сумма содержания Mo и полусодержания W должна быть не менее 1%. Чтобы не ухудшать ковкость и не образовать интерметаллиды фазы µ типа Fe7Mo6 (см. также Cr и V), нельзя чтобы Mo+W/2 превышало 4%. Предпочтительно, чтобы сумма Мо+W/2 была в пределах от 1 до 2%.

Cr и V являются предшественниками для стабилизации М2С, которые являются «метастабильными» карбидами. V образует карбиды, которые «блокируют» связки между зернами и ограничивают укрупнение зерен во время термических обработок при повышенной температуре. Нельзя превышать V=0,3%, чтобы не создать благоприятных условий для образования нежелательных интерметаллидов фазы µ. Предпочтительно, чтобы содержание V было в пределах от 0,2 до 0,3%.

Присутствие Cr (по меньшей мере 2%) позволяет понизить содержание карбидов V и повысить содержание М2С. Содержание Cr не должно превышать 5%, чтобы не образовалась фаза µ и затем карбиды М23С6. Предпочтительно содержание Cr не должно превышать 4%.

Присутствие С благоприятствует появлению М2С по отношению к фазе µ. Но избыточное содержание С вызывает сегрегацию и понижение Ms. Его содержание должно быть в пределах от 0,18 до 0,30%, предпочтительно 0,20-0,25%.

Со замедляет восстановление дислокации и, следовательно, замедляет механизмы сверхстарения в мартенсите в горячем состоянии. Он позволяет при этом сохранить повышенную термостойкость. Однако полагают, что, поскольку Со благоприятствует образованию упомянутой выше фазы µ, которая является фазой, упрочняющей мартенситостареющие стали существующего уровня техники, включающие Fe-Ni-Co-Mo, значительные количества Со способствуют уменьшению количества Мо и/или W, способных образовывать карбиды M2C, которые способствуют упрочнению по механизму, который желательно усилить. Предлагаемое содержание Со (5-7%) в сочетании с содержаниями других элементов приводит к компромиссу между различными преимуществами и недостатками.

Ni и Al взаимосвязаны. Если содержание Al слишком высоко по отношению к Ni, потенциала вторичного аустенита больше не существует. Если имеется слишком много Ni, слишком занижается содержание упрочняющей фазы типа NiAl, a Al в основном находится в растворе. В конце закалки нельзя иметь остаточный аустенит и необходим возврат к мартенситной структуре. Для этой цели, если применяется закалка на твердом СО2, нужно иметь Ms≥140°C. Ms рассчитывают по классической формуле: Ms=550-350×С%-40×Mn%-17×Cr%-10×Mo%-17×Ni%-8×W%-35×V%-10×Cu%-10×Co%+30×Al% (°C). Содержание Ni должно быть скорректировано в этих целях как функция от других элементов. Необходимо иметь Al=1-2%, предпочтительно 1-1,6%, еще более предпочтительно 1,4-1,6%, а Ni=10,5-15% при Ni≥7+3,5 Al. В идеальном случае имеется 1,5% Al и 12-13% Ni. Эти условия благоприятствуют присутствию NiAl, что повышает стойкость к деформации растяжения Rm, которая, как это установлено, не изменяется при относительно низком содержании Со. Предел упругости Rp0,2 так же зависит от указанных факторов, как и Rm.

По сравнению с известными сталями из US-A-5393388, где для того, чтобы иметь ковкость и повышенную пластичность, прибегают к очень высокому содержанию вторичного аустенита, настоящее изобретение для того, чтобы добиться повышенной механической прочности при нагреве, оказывает предпочтение присутствию упрочняющих фаз В2, а именно NiAl. Соблюдение указанных выше условий в отношении Ni и Al обеспечивает потенциальное содержание вторичного аустенита, достаточно высокое для сохранения ковкости и пластичности, подходящих для предполагаемых применений.

Возможны добавки В, но, чтобы не ухудшить ковкость стали, их не должно быть более 50 ч/млн.

Одним из признаков изобретения является также возможность замены по меньшей мере части молибдена вольфрамом. В эквивалентной атомной доле W выделяется при затвердевании в меньшей степени, чем Мо и придает механическую прочность в горячем состоянии, благодаря образованию очень стойких к температуре карбидов. Недостатком W является его высокая стоимость, которую можно оптимизировать, ассоциируя W с Мо. Как уже было сказано, сумма Mo+W/2 должна быть в пределах от 1 до 4%, предпочтительно от 1 до 2%. Для ограничения стоимости стали предпочитают сохранять минимальное содержание Мо равным 1%.

N может достигать 100 ч/млн, если производственный процесс проводится на воздухе и если N связывается в виде карбонитридов Nb и/или V, чтобы избежать образования охрупчивающего нитрита AlN. Предпочтительно вести производственный процесс в вакууме, так чтобы иметь N≤50 ч/млн, а в некоторых случаях ≤10 ч/млн.

Си может достигать 1%. Она способна участвовать в упрочнении за счет своей эпсилон-фазы, а присутствие Ni позволяет ограничить ее вредные эффекты.

В общем случае элементы, которые могут включаться в связки между зерен и делают их ломкими, такие как Р и S, должны регулироваться в следующих пределах: S = следы - 50 ч/млн, предпочтительно следы - 10 ч/млн, еще более предпочтительно следы - 5 ч/млн, и Р = следы - 200 ч/млн, предпочтительно следы - 100 ч/млн.

В качестве раскислителя можно использовать Са, который может оставаться в конце в качестве остатка (≤500 ч/млн). Аналогичным образом могут сохраняться в конце остатки редкоземельных металлов (≤500 ч/млн) после аффинажной обработки жидкого металла.

Приемлемое содержание кислорода варьирует в зависимости от того, была ли получена сталь способом порошковой металлургии или она произведена из жидкого металла на воздухе или в вакууме. В первом случае допустимым является содержание, которое может доходить до 200 ч/млн. Во втором случае максимальное содержание составляет 50 ч/млн, предпочтительно 10 ч/млн.

В качестве примеров были испытаны образцы стали, составы которых (в массовых процентах) приведены в таблице 1:

Сталь, обозначенная А, соответствует стали согласно US-A-5393388 с повышенным содержанием Со.

Сталь обозначенная В, соответствует стали, сопоставимой со сталью А, к которой добавлено некоторое количество V без изменения содержания Со.

Сталь С соответствует изобретению, в частности в том, что по сравнению со сталями А и B в ней повышено содержание Al и снижено содержание Со.

Сталь D согласно изобретению, кроме того, дополнена добавкой В.

Сталь Е согласно изобретению, кроме того, дополнена добавкой Nb.

Эти образцы были выкованы из 200-кг слитков в плитки размером 75×35 мм в следующих условиях. После гомогенизационной обработки в течение по меньшей мере 16 час при 1250°С проводят первую операцию ковки, предназначенную для фракционирования грубых структур слитков; вслед за чем после повторного подъема температуры до 1180°С выковывают полупродукты с квадратным сечением 75×75 мм; наконец, каждый из полупродуктов помещают в печь при 950°С и затем выковывают при этой температуре в форме плиток 75×35 мм, структура которых после указанных последовательных операций становится тонкой.

После ковки образцы подвергают:

- переводу в раствор при 900°С в течение 1 часа с последующим охлаждением на воздухе;

- криогенной обработке при -80°С в течение 8 час;

- упрочнению старением при 495°С в течение 5 час с последующим охлаждением на воздухе.

Свойства образцов (прочность на разрыв Rm, предел прочности на растяжение Rp0.2, удлинения A5d, усадка Z, ударная вязкость KV, твердость HRC и размер зерна ASTM) приведены в таблице 2. Измерения проводили при температуре окружающей среды.

Таблица 2 Свойства испытанных образцов Rm (МПа) Rp0.2 (МПА) A5d (%) Z (%) KV (Дж) HRC Зерно ASTM А 2176 1956 11,2 58 25/27 55,3 8 В 2218 2002 9.9 56 26/30 56,3 8/9 С 2316 2135 9.5 49 20/24 57.6 8 D 2328 1997 8,9 43 21/22 57.9 8 Е 2303 1959 10 47 16/19 57.6 9

Как следует из таблицы, образцы С, D и Е согласно изобретению обладают прочностью на разрыв намного более высокой, чем образцы сравнения А и В. Предел прочности на растяжение имеет величину по крайней мере того же порядка. В противоположность повышению прочности на разрыв способность к ковке (усадка и удлинение при разрыве) и ударная вязкость в случае описанной и примененной термообработки оказались пониженными.

Образец сравнения В показывает, что добавление к стали А лишь одного V приводит к улучшению только некоторых свойств и чаще всего в пределах менее значительных, чем в случае изобретения.

В частности, повышение Al в случае изобретения в сочетании с поддержанием высокого содержания Ni увеличивает присутствие упрочняющей фазы NiAl и является существенным фактором в улучшении прочности на разрыв.

Добавки В и Nb в образцах D и Е, соответственно, не являются обязательными для получения повышенной механической прочности, которая является основной целью изобретения.

Дополнительные эксперименты, проводимые, в частности, на образце С, позволили установить, что для того, чтобы получить полную рекристаллизацию стали во время перевода в раствор, в дополнение к проводимым обработкам перед переводом в раствор необходим размягчающий отпуск при температуре не ниже 600°С. Этот размягчающий отпуск может, например, быть проведен в течение 8 час при 650°C с последующим охлаждением на воздухе. Благодаря этому получаемые после термомеханических превращений заготовки могут без всяких проблем подвергаться операциям заключительной обработки (рихтовке, обдирке, токарной обработке и т.д.), придающим детали ее окончательную форму.

После названного размягчающего отпуска в течение 8 час при 650°С и охлаждения на воздухе перевод в раствор при 935°С в течение 1 часа с последующим охлаждением в масле, криогенная обработка при -80°С в течение 8 час, снятие напряжения при 200°С в течение 8 час (на образцах для испытания на растяжение) или 16 час (на образцах для испытания на ударную вязкость) и старения при 500°С в течение 12 час с последующим охлаждением на воздухе позволили получить размер зерна ASTM=8 и следующие механические свойства:

- в продольном направлении при 20°С: Rm=2271 МПа; Rp0.2=1983 МПа; A5d=11,8%; Z=57%; KV=27 Дж;

- в поперечном направлении при 20°С: Rm=2273 МПа; Rp0.2=2023 МПа; A5d=8,8%; Z=41%; KV=22-24 Дж;

- в продольном направлении при 400°С: Rm=1833 МПа; Rp0.2=1643 МПа; A5d=11,1%; Z=58%.

Таким образом, в продольном направлении при 20°С имеет место прекрасный компромисс между прочностью на растяжение, ковкостью и ударной вязкостью. При 400°С прочность на растяжение также остается очень высокой и сталь изобретения, таким образом, очень хорошо соответствует поставленным задачам.

В общем случае усовершенствованный способ термической обработки стали согласно изобретению с целью получения детали, обладающей желаемыми свойствами, после ковки заготовки детали и перед заключительной обработкой, придающей детали конечную форму, состоит в следующем:

- размягчающий отпуск при 600-675°С в течение от 4 до 20 час с последующим охлаждением на воздухе;

- перевод в раствор при 900-1000°С в течение не менее 1 часа с последующим охлаждением в масле или на воздухе, произведенным достаточно быстро, чтобы избежать осаждения в аустенитной матрице межгранульных карбидов;

- необязательно криогенная обработка при -50°С или ниже, предпочтительно при -80°С или ниже, с целью превращения всего аустенита в мартенсит, и при этом температура на 200°С или более ниже Ms, причем по меньшей мере одна из указанных обработок длится не менее 2 час; для составов, у которых, в частности, содержание Ni относительно низко, такая криогенная обработка менее полезна;

- необязательно размягчающая обработка упрочненного при закалке мартенсита, проводимая в течение 4-16 час при 150-250°С, с последующим охлаждением на спокойном воздухе;

- упрочнение старением при 475-600°С, предпочтительно при 490-525°С, в течение 5-20 час.

Предпочтительными объектами применения стали согласно изобретению являются долговечные детали для механических устройств и структурные элементы, для которых необходимо иметь прочность на растяжение на холоду от 2200 до 2350 МПа в сочетании со значениями для ковкости и ударной вязкости, по меньшей мере эквивалентными тем же значениям у лучших высокопрочных сталей, и при нагреве (400°С) прочность на растяжение порядка 1800 МПа, а также оптимальные усталостные характеристики.

Преимуществом стали согласно изобретению является ее способность к цементации и азотированию. Благодаря этому деталям из этой стали можно придавать повышенную стойкость к истиранию. Это в особенности выгодно для упомянутых выше предполагаемых применений.

Похожие патенты RU2400557C2

название год авторы номер документа
ЗАКАЛЕННАЯ МАРТЕНСИТНАЯ СТАЛЬ С НИЗКИМ СОДЕРЖАНИЕМ КОБАЛЬТА, СПОСОБ ПОЛУЧЕНИЯ ДЕТАЛИ ИЗ ЭТОЙ СТАЛИ И ДЕТАЛЬ, ПОЛУЧЕННАЯ ЭТИМ СПОСОБОМ 2009
  • Рош Франсуа
RU2497974C2
ЗАКАЛЕННАЯ МАРТЕНСИТНАЯ СТАЛЬ С НИЗКИМ ИЛИ НУЛЕВЫМ СОДЕРЖАНИЕМ КОБАЛЬТА, СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛИ ИЗ ЭТОЙ СТАЛИ И ПОЛУЧЕННАЯ ЭТИМ СПОСОБОМ ДЕТАЛЬ 2008
  • Монтаньон Жак
RU2456367C2
СОСТАВ МАРТЕНСИТНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ, СПОСОБ ИЗГОТОВЛЕНИЯ МЕХАНИЧЕСКОЙ ДЕТАЛИ ИЗ ЭТОЙ СТАЛИ И ДЕТАЛЬ, ИЗГОТОВЛЕННАЯ ЭТИМ СПОСОБОМ 2006
  • Монтаньон Жак
RU2415196C2
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗ ЛИСТА ДЕТАЛИ ИЗ МАРТЕНСИТНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ 2017
  • Сантакрё, Пьер-Оливье
  • Казе, Кристоф
  • Бадинье, Гийом
  • Моро, Жан-Бенуа
RU2724767C2
СТАЛЬ, ИЗДЕЛИЕ, ПОЛУЧЕННОЕ ИЗ УКАЗАННОЙ СТАЛИ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2016
  • Перрен Герен, Валери
RU2743570C2
СТАЛЬ, ПРОДУКТ, ПРОИЗВЕДЕННЫЙ ИЗ ТАКОЙ СТАЛИ, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2016
  • Перрен Герен Валери
  • Пэнтон Жиль
  • Борда Анжелин
  • Валлад Кристиан
RU2733612C2
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНОЙ КОНСТРУКЦИОННОЙ СТАЛИ И ИЗДЕЛИЕ ИЗ ВЫСОКОПРОЧНОЙ КОНСТРУКЦИОННОЙ СТАЛИ 2012
  • Сомани, Махеш, Чандра
  • Портер, Дэвид, Артур
  • Карьялайнен, Лео, Пентти
  • Расмус, Теро Тапио
  • Хирви, Ари Микаель
RU2608869C2
СВЕРХПРОЧНАЯ МНОГОФАЗНАЯ СТАЛЬ И СПОСОБ ИЗГОТОВЛЕНИЯ СТАЛЬНОЙ ПОЛОСЫ ИЗ ЭТОЙ МНОГОФАЗНОЙ СТАЛИ 2018
  • Шульц Томас
RU2742998C1
СТАЛЬ ДЛЯ БЕСШОВНЫХ ТРУБЧАТЫХ ИЗДЕЛИЙ, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ИСПОЛЬЗОВАНИЯ ПРИ ВЫСОКОЙ ТЕМПЕРАТУРЕ 2002
  • Арбаб Алиреза
  • Лефевр Брюно
  • Вайан Жан-Клод
RU2293786C2
ВЫСОКОПРОЧНЫЙ ГОРЯЧЕКАТАНЫЙ ПЛОСКИЙ СТАЛЬНОЙ ПРОДУКТ С ВЫСОКОЙ УСТОЙЧИВОСТЬЮ К ОБРАЗОВАНИЮ КРАЕВЫХ ТРЕЩИН И ОДНОВРЕМЕННО ВЫСОКИМ ПОКАЗАТЕЛЕМ ТЕРМОУПРОЧНЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ТАКОГО ПЛОСКОГО СТАЛЬНОГО ПРОДУКТА 2018
  • Денкс Ингвер
  • Шётлер Иоахим
  • Пельц Кристиан
  • Виттелер Патрик
RU2743041C1

Реферат патента 2010 года ЗАКАЛЕННАЯ МАРТЕНСИТНАЯ СТАЛЬ, СПОСОБ ПОЛУЧЕНИЯ ДЕТАЛИ ИЗ ЭТОЙ СТАЛИ И ПОЛУЧАЕМАЯ ТАКИМ СПОСОБОМ ДЕТАЛЬ

Изобретение относится к области металлургии, а именно к получению деталей из закаленной мартенситной стали. Выплавляют сталь, содержащую в мас.%: С 0,18-0,30, Со 5-7, Cr 2-5, Al 1-2, (Mo+W/2) 1-4, V следы - 0,3, Nb следы - 0,1, В следы - 50 ч/млн, Ni 10,5-15 при условии, что Ni≥7+3,5Al, Si следы - 0,4, Mn следы - 0,4, Са следы - 500 ч/млн, редкоземельные элементы следы - 500 ч/млн, Ti следы - 500 ч/млн, N следы - 100 ч/млн, S следы - 50 ч/млн, Cu следы - 1, Р следы - 200 ч/млн, О следы - 200 ч/млн, если сталь получена с помощью порошковой металлургии, или О следы - 50 ч/млн, если сталь получена в производственном процессе из жидкого металла на воздухе или в вакууме, остальное железо и неизбежные примеси. Осуществляют ковку стали. Выполняют размягчающий отпуск при 600-675°С в течение от 4 до 20 час с последующим охлаждением на воздухе. Нагревают сталь до 900-1000°С в течение по меньшей мере 1 часа с переводом в твердый раствор и осуществляют последующее охлаждение в масле и на воздухе достаточно быстро для предотвращения выпадения в аустенитной матрице межгранульных карбидов. Упрочняют сталь старением при 475-600°С, предпочтительно при 490-525°С, в течение 5-20 час. Придают детали требуемую форму окончательной обработкой. Сталь обладает более высокой механической прочностью при нагреве при сохранении требуемых характеристик усталости и хрупкости. 3 н. и 19 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 400 557 C2

1. Сталь, отличающаяся тем, что она имеет следующий состав, мас.%:
С=0,18-0,30
Со=5-7
Cr=2-5
Al=1-2
Mo+W/2=1-4
V = следы - 0,3
Nb = следы - 0,1
В = следы - 50 ч./млн
Ni = 10,5 - 15 при условии, что Ni≥7+3,5Al
Si = следы - 0,4
Mn = следы - 0,4
Са = следы - 500 ч./млн
Редкоземельные элементы = следы - 500 ч./млн
Ti = следы - 500 ч./млн
О = следы - 200 ч./млн, если сталь получена с помощью порошковой металлургии, или О = следы - 50 ч./млн, если сталь получена в производственном процессе из жидкого металла на воздухе или в вакууме
N = следы - 100 ч./млн
S = следы - 50 ч./млн
Cu = следы - 1
Р = следы - 200 ч./млн
остальное железо и неизбежные примеси.

2. Сталь по п.1, отличающаяся тем, что она содержит 0,20-0,25 мас.% С.

3. Сталь по п.1, отличающаяся тем, что она содержит 2-4 мас.% Cr.

4. Сталь по п.1, отличающаяся тем, что она содержит 1-1,6 мас.% Al, предпочтительно 1,4-1,6 мас.% Al.

5. Сталь по п.1, отличающаяся тем, что она содержит Мо≥1 мас.%.

6. Сталь по п.1, отличающаяся тем, что она содержит Mo+W/2=1-2 мас.%.

7. Сталь по п.1, отличающаяся тем, что она содержит 0,2-0,3 мас.% V.

8. Сталь по п.1, отличающаяся тем, что она содержит от следов до 0,05 мас.% Nb.

9. Сталь по п.1, отличающаяся тем, что она содержит от следов до 0,25 мас.% Si, предпочтительно от следов до 0,10 мас.% Si.

10. Сталь по п.1, отличающаяся тем, что она содержит от следов до 0,25 мас.% Mn, предпочтительно от следов до 0,10 мас.% Mn.

11. Сталь по п.1, отличающаяся тем, что она содержит от следов до 100 ч./млн Ti.

12. Сталь по п.1, отличающаяся тем, что она содержит от следов до 10 ч./млн О.

13. Сталь по п.1, отличающаяся тем, что она содержит от следов до 50 ч./млн N, предпочтительно от следов до 10 ч./млн N.

14. Сталь по п.1, отличающаяся тем, что она содержит от следов до 10 ч./млн S, предпочтительно от следов до 5 ч./млн S.

15. Сталь по п.1, отличающаяся тем, что она содержит от следов до 100 ч./млн Р.

16. Сталь по одному из пп.1-15, отличающаяся тем, что ее температура мартенситного перехода Ms выше или равна 140°С, при условии Ms=550-350×С%-40×Mn%-17×Cr%-10×Мо%-17×Ni%-8×W%-35×V%-10×Cu%-10×Со%+30×Al%(°С).

17. Способ изготовления детали из стали, отличающийся тем, что он включает в себя следующие стадии, предшествующие окончательной обработке детали с приданием ей завершающей формы:
приготовление стали, имеющей состав по одному из пп.1-16,
ковка этой стали,
размягчающий отпуск при 600-675°С в течение от 4 до 20 ч с последующим охлаждением на воздухе,
нагрев при 900-1000°С в течение по меньшей мере 1 ч для перевода стали в раствор с последующим охлаждением в масле и на воздухе достаточно быстрым, чтобы избежать выпадение в аустенитной матрице межгранульных карбидов,
упрочнение старением при 475-600°С, предпочтительно при 490-525°С, в течение 5-20 ч.

18. Способ изготовления детали из стали по п.17, отличающийся тем, что он дополнительно включает криогенную обработку при -50°С или ниже, предпочтительно при -80°С или ниже, с целью превращения всего аустенита в мартенсит, и при этом температура на 200°С или более ниже Ms и по меньшей мере одна из указанных обработок длится не менее 2 ч.

19. Способ изготовления детали из стали по п.17, отличающийся тем, что он дополнительно включает размягчающую обработку упрочненного при закалке мартенсита, проводимую в течение 4-16 ч при 150-250°С, с последующим охлаждением на неподвижном воздухе.

20. Способ изготовления детали из стали по одному из пп.17-19, отличающийся тем, что деталь подвергают цементации или азотированию.

21. Механическая деталь или деталь для структурного элемента, отличающаяся тем, что ее получают способом по одному из пп.17-20.

22. Деталь по п.21, отличающаяся тем, что она представляет собой трансмиссионный вал двигателя.
Приоритет по пунктам:

27.04.2005 по пп.1-19, 21;

12.07.2005 по пп.20, 22.

Документы, цитированные в отчете о поиске Патент 2010 года RU2400557C2

WO 2004072308 A2, 26.08.2004
МАРТЕНСИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ УЛУЧШЕННОЙ ОБРАБАТЫВАЕМОСТИ 1994
  • Оливье Блеттон[Fr]
  • Жак Бэйоль[Fr]
  • Паскаль Террьен[Fr]
RU2080410C1
СТАЛЬ ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ И БЕСШОВНЫЕ ТРУБЫ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ 2002
  • Кузнецов В.Ю.
  • Печерица А.А.
  • Кузнецова Е.Я.
  • Лубе И.И.
  • Фролочкин В.В.
  • Лашкуль Н.Н.
  • Уткин Ю.Н.
  • Родионова И.Г.
  • Бакланова О.Н.
  • Быков А.А.
  • Столяров В.И.
  • Реформатская И.И.
  • Порецкий С.В.
  • Рыбкин А.Н.
RU2243284C2
US 5393488 A, 28.02.1995
GB 1089934 A, 08.11.1967
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1

RU 2 400 557 C2

Авторы

Монтаньон Жак

Эритье Филипп

Песлерб Изабель

Монс Клод

Даты

2010-09-27Публикация

2006-04-20Подача