Изобретение относится к микробиологии и биотехнологии и представляет собой новый бактериальный штамм, который может быть использован для очистки почвы и жидких сред, например грунтовых и поверхностных вод, загрязненных органофосфонатами.
Органофосфонаты входят в состав большого числа ксенобиотиков, в том числе гербицидов. Хотя применение химических средств защиты растений строго регламентируется, загрязнения агроэкосистемы этими веществами чаще всего происходят из-за завышенных норм расхода, плохо отлаженной техники. Органофосфонаты характеризуются наличием химически стабильной углерод-фосфорной связи, устойчивой к фотолизу, химическому гидролизу и тепловому разрушению. Однако углерод-фосфорная связь может подвергаться разрыву вследствие ферментативного действия микроорганизмов с высвобождением неорганического фосфора, который используется клетками в качестве биогенного элемента.
Для ремедиации загрязненных территорий применяют физические, химические и биологические способы. Биологические технологии, включающие использование штаммов микроорганизмов, являются наиболее предпочтительными вследствие своей экологической безопасности, низкой себестоимости работ и достаточно высокой эффективности, что было неоднократно продемонстрировано при решении разных экологических задач.
Трудно деградируемый и токсичный для природы и человека органофосфонат - глифосат [N-(фосфонометил)лицин] является действующим веществом ряда гербицидов, таких как Гаунд Био и Раундап, и широко используется во всем мире.
Глифосат подвергается в почве быстрой детоксикации в результате почвенного связывания и микробной деградации [1, 2]. Однако сорбция глифосата почвенным матриксом снижает степень минерализации и делает гербицид более персистентным. Он может накапливаться в пахотном слое почвы, откуда через корневую систему растений попадать в листья, ягоды, плоды и, мигрируя по пищевым цепям, в организм теплокровных животных и человека.
Анализ опубликованных к настоящему времени работ свидетельствует о наличии в природе микроорганизмов-деструкторов органофосфонатов, в том числе и глифосата.
Штаммы бактерий Pseudomonas sp. LBr [3] и Flavobacterium sp. [4], выделенные из загрязненных глифосатом источников, способны утилизировать гербицид в качестве единственного источника фосфора в условиях периодического культивирования. Штамм бактерий Pseudomonas sp. LBr устойчив к концентрациям глифосата в среде до 20 мМ (около 3 г/л) глифосата, однако его основная часть (до 90%) не утилизируется, а подвергается трансформации до аминометилфосфоната, который содержит в своей структуре устойчивую углерод-фосфорную связь. Штамм бактерий Flavobacterium sp. также трансформирует глифосат (150 мг/л) до аминометилфосфоната, причем около 60% этого соединения остается в культуральной жидкости.
Таким образом, недостатком этих штаммов является неполная деградация глифосата и накопление в среде продукта его деградации.
Известный штамм бактерий Arthrobacter sp. GLP-1, выделенный в накопительной культуре с глифосатом, обладает широкой субстратной специфичностью по отношению к органофосфонатам. Он использует глифосат как единственный источник фосфора с разрывом С-Р-связи и остается жизнеспособным при концентрации глифосата в среде до 850 мг/л. Эффективность биодеструкции глифосата, рассчитанная на основании приведенных в статье данных, составляет 13 мг/г биомассы [5].
Известный штамм бактерий Ochrobactrum sp. GPK 3, выделенный из загрязненных глифосатом почв, обладает высоким деструктивным потенциалом в условиях периодического культивирования. Он разлагает до 220 мг/л глифосата при содержании глифосата в среде 500 мг/л с эффективностью 78 мг/г биомассы [6].
О деструктивной активности штамма в условиях почвенных экспериментов данные отсутствуют.
Известен способ очистки жидких стоков, содержащих глифосат, с помощью иммобилизованной смешанной культуры микроорганизмов АТСС 55050, в которую входит штамм бактерий Moraxella anatipestifer ATCC 55051. Смешанная культура обладает высокой способностью к биодеградации глифосата в водных системах. При пропускании загрязненных вод, содержащих 1400 мг/л глифосата, через колонку с иммобилизованной биомассой микроорганизмов, составляющих ассоциацию АТСС 55050, эффективность деструкции составляет 85% за 5 дней [7].
Изученные нами литературные источники позволяют сделать вывод, что в исследованиях, проводимых со штаммами-деструкторами органофосфонатов, основное внимание уделялось изучению свойств этих микроорганизмов, их субстратной специфичности, механизмам разрушения таких соединений.
Процесс деструкции глифосата в почве изучался только под действием аборигенной микрофлоры [1, 2, 8]. Максимальная степень деградации токсиканта составила не более 11% [8] при дозе внесения гербицида 100 мг/кг почвы.
В литературе нами не было найдено документов, где были бы описаны способы биоремедиации загрязненных органофосфонатами почв с помощью внесенных микроорганизмов-деструкторов.
Не обнаружено также данных по изучению интегральной токсичности и безвредности для теплокровных животных выделенных микроорганизмов-деструкторов органофосфонатов.
Наиболее близким к предлагаемому штамму по эффективности биодеструкции глифосата и широкой субстратной специфичности является штамм бактерий Pseudomonas sp. PG2982. Данный штамм утилизирует 1 мМ (до 170 мг/л) глифосата в условиях периодического культивирования [9]. Однако сведения о его использовании в целях биоремедиации почв, загрязненных глифосатом, отсутствуют.
Задачей изобретения является получение активного штамма-деструктора широкого спектра органофосфонатов, который обладает высокой утилизирующей способностью в условиях окружающей среды, устойчив к высоким концентрациям глифосата, не обладает патогенностью и может быть использован для очистки почвы и жидких сред от загрязнения глифосатом и другими органофосфонатами.
Предлагаемый штамм бактерий Achromobacter sp.Kg 16 выделен методом накопительной культуры из почвы Краснодарского края, длительное время обрабатываемой гербицидом Раундап, идентифицирован в соответствии с анализом первичной нуклеотидной последовательности генов 16 S рибосомальной РНК и депонирован во Всероссийской коллекции микроорганизмов (В КМ) под регистрационным номером ВКМ В-2534 Д.
В чистую культуру указанный штамм был выделен из накопительной культуры на агаризованной среде MS1 (г/л): NH4Cl - 2.0; MgSO4·7H2O - 0.2; K2SO4 - 0.5; агар-агар - 18.0; микроэлементы (мг/л): FeSO4·7H2O - 2.5; СаCl2·6Н2О - 10.0; CuSO4·5H2O - 2.0; Н3ВО3 - 0.06; ZnSO4·7H2O - 20.0; MnSO4·H2O - 1.0; NiCl2·6H2O - 0.05; Na2MoO4·2H2O - 0.3, pH 7,0-7,2.
Источник углерода - глутамат натрия в концентрации 10 г/л. В качестве источника фосфора используют 0.5 г/л глифосата в составе гербицида Граунд Био (производитель - торгово-промышленная компания «Техноэкспорт», Россия), который содержит 360 г/л глифосата в виде изопропиламинной соли.
Предлагаемый штамм бактерий Achromobacter sp. ВКМ В-2534 Д характеризуется следующими признаками.
Культурально-морфологические признаки.
При росте в жидких средах Лурия - Бертани (LB), мясо-пептонном бульоне и ферментативном гидролизате рыбной муки (ФГРМ) через 24-48 часов клетки палочковидной формы, короткие, подвижные с полярным жгутикованием, длина клеток 1.4-2.5 мк, ширина 0.6 мк; спор не образуют, грамотрицательны. Колонии на агаризованных средах круглые, диаметром до 3 мм, выпуклые с конусом в центре, кремового цвета, блестящие, маслянистой консистенции, полупрозрачные по периферии, край ровный.
Физиолого-биохимические признаки.
Штамм бактерий Achromobacter sp. BKM В-2534 Д является строгим аэробом, растет при температурах от +4 до +34°С в диапазоне рН 6.0-8.0. Температурный оптимум 28±1°С, оптимум рН 6.5-7.5. В качестве источника углерода потребляет глутамат, пируват, сукцинат, фумарат, цитрат, малат. Не использует сахарозу, глюкозу, мальтозу, арабинозу, ксилозу, лактозу, трегалозу. Прототроф, в дополнительных факторах роста не нуждается. Имеет отрицательный анаэробный и аэробный тест Хью-Лейфсона.
Обладает оксидазной и каталазной активностью, пигмент не образует, желатину не разжижает, крахмал не гидролизует. Культура устойчива к антибиотикам: стрептомицину, эритромицину, линкомицину, налидиксовой кислоте.
В присутствии органических кислот в качестве источника углерода расщепляет углерод-фосфорную связь глифосата, а также других органофосфонатов - метилфосфоната, 2-аминоэтилфосфоната, аминометилфосфоната, фосфономицина, фосфоноацетата, N-(фосфонометил)иминодиацетата, используя высвобождающийся неорганический фосфор для роста клеток.
Штамм не патогенен, не обладает вирулентностью, токсичностью, токсигенностью и диссеминацией во внутренних органах экспериментальных животных.
Штамм хранится в пробирках на косяках твердой среды MS1 (агар-агар 18 г/л) под слоем стерильного вазелинового масла при температуре +(2-4)°С и в лиофильно высушенном состоянии.
В таблице 1 приведены данные, которые показывают, что предлагаемый штамм бактерий обладает высоким деструктивным потенциалом по сравнению с описанными ранее микроорганизмами.
К преимуществам штамма относится способность к росту в среде с концентрацией глифосата 10 г/л и эффективностью деструкции 345 мг/г биомассы. Кроме того, штамм активно разлагает глифосат в почве, где его содержание превышает в 10 раз рекомендуемые нормы применения гербицида.
К преимуществам штамма относится также способность разлагать другие органофосфонаты, такие как метилфосфонат, 2-аминоэтилфосфонат, аминометилфосфонат, фосфономицин, фосфоноацетат, N-(фосфонометил) иминодиацетат.
Предлагаемый штамм бактерий не обладает патогенностью, вследствие чего его можно безопасно использовать в биотехнологических целях, в частности для очистки почв, загрязненных органофосфонатами.
Способ биоремедиации, включающий внесение штамма бактерий Achromobacter sp. ВКМ В-2534 Д в почву, загрязненную глифосатом, обеспечивает высокую эффективность очистки. Через 28 суток степень деструкции глифосата в почве с внесенным штаммом бактерий была в 2,5 раза выше, чем только с естественной микрофлорой. При этом происходит снижение интегральной токсичности и фитотоксичности до показателей незагрязненной почвы.
Изобретение поясняется следующими примерами, но не ограничивается ими.
Пример 1. Деструкция глифосата в зависимости от продолжительности голодания по фосфору посевного материала.
Культивирование штамма бактерий Achromobacter sp. ВКМ В-2534 Д проводят в колбах Эрленмейера объемом 750 мл с 100 мл среды на качалке (180 об/мин) при 28±1°С.
Посевной материал выращивают в течение 3 суток на агаризованной среде MS1 с глифосатом.
Клетки смывают в стерильную колбу жидкой средой MS1 без источника фосфора и инкубируют на качалке 180 об/мин при 28±1°С для голодания по фосфору.
Через 0, 36, 48 и 72 часа отбирают часть суспензии и используют ее для засева опытных колб (объем 750 мл) со 100 мл среды MS1 с 0.5 г/л глифосата в составе гербицида Граунд Био и 10 г/л глутамата натрия с начальной оптической плотностью 0.1-0.2 ед. Культивирование ведут на качалке со 180 об/мин, рН среды поддерживают на уровне 6.5-7.5 внесением стерильного 20% раствора H2SO4. Ежедневно отбирают пробы культуральной жидкости, клетки отделяют центрифугированием и в супернатанте определяют содержание глифосата методом высокоэффективной жидкостной хроматографии. Культивирование прекращают через 120 часов при переходе культуры в стационарную фазу роста.
Результаты, представленные в таблице 2, свидетельствуют о том, что штамм имеет максимальную деструктивную активность при голодании инокулята по фосфору в течение 36 часов. Эффективность деструкции глифосата составляет 56 мг/г биомассы, то есть увеличивается в 1,4 раза по сравнению с неголодающими клетками.
Пример 2. Деструкция глифосата в жидкой среде с различными его концентрациями.
Штамм бактерий Achromobacter sp. ВКМ В-2534 Д выращивают в колбах в жидкой минеральной среде MS1, как описано в примере 1. В качестве источника фосфора используют глифосат в концентрации 0.05; 0.25; 0.50; 1.0; 5.0 и 10.0 г/л. Инокулят готовят, как описано в примере 1, и используют после 36 ч голодания.
Полученную культуральную жидкость анализируют для определения содержания в ней глифосата. Данные, представленные в таблице 3, показывают, что способность к разложению сохраняется при росте штамма в среде с высокой концентрацией глифосата (до 10 г/л), достигая при этом максимальной степени деструкции (345 мг/г биомассы).
Пример 3. Деструкция различных органофосфонатов.
Штамм бактерий Achromobacter sp. BKM В-2534 Д выращивают, как описано в примере 1.
В качестве источника фосфора используют ряд органофосфонатов: метилфосфонат, 2-аминоэтилфосфонат, аминометилфосфонат, фосфономицин, фосфоноацетат, N-(фосфонометил) иминодиацетат, в количествах, соответствующих концентрациям фосфора 90-100 мг/л.
Инокулят готовят, как описано в примере 1, и используют после 36 ч голодания по фосфору. После прекращения роста бактерий в культуральной жидкости определяют остаточное количество органофосфонатов спекрофотометрически по разнице между общим и неорганическим фосфором и рассчитывают эффективность деструкции.
Данные таблицы 4 показывают, что предлагаемый штамм бактерий способен деградировать широкий ряд органофосфонатов в условиях периодического культивирования.
Пример 4. Биодеградация глифосата в почве в лабораторных экспериментах.
Биодеградацию глифосата в почве проводят с использованием неокультуренной дерново-подзолистой почвы. Просеянную воздушно-сухую почву помещают в пластиковые стаканы по 500 г и увлажняют до 60% от полной влагоемкости. 25 мл 0.03% раствора препарата Грауд Био, содержащего глифосат, вносят в поверхностный слой почвы в стакане из расчета 100 л/га (80±10 мг глифосата/кг абсолютно сухой почвы). Почву выдерживают в течение 3 суток для прохождения процессов сорбции глифосата на почвенных частицах.
Для получения микробной суспензии биомассу штамма бактерий Achromobacter sp. BKM В-2534 Д выращивают, как описано в примере 2, с использованием 0.5 г/л глифосата. Выросшую биомассу отделяют центрифугированием, отмывают два раза минеральной средой MS1 без глифосата и суспендируют клетки в той же среде до концентрации (1±0.5)×108 кл/мл.
В опытные стаканы с почвой вносят по 30 мл суспензии клеток из расчета 1 л/м2 поверхности почвы. При этом титр клеток составляет 107 кл/г абсолютно сухой почвы.
В контрольном варианте используют почву, загрязненную препаратом Граунд Био, содержащим глифосат, без внесения микроорганизмов. Продолжительность опыта 28 суток.
Из почвы глифосат извлекают путем экстракции 1 N раствором NaOH. Для идентификации и количественного определения глифосата используют метод высокоэффективной жидкостной хроматографии.
Интегральную токсичность почвы исследуют путем биотестирования на дафниях [10]. Токсичными считают пробы, в которых гибель дафний превышает 50% по сравнению с контролем. Фитотоксичность почвы характеризуют по морфометрическим показателям растений овса: длине корня растений [11].
Приведенные в таблице 5 результаты показывают, что содержание глифосата в опытном образце почвы, обработанном заявляемым штаммом, снижается на 57%, а в контрольном варианте на 24%. Интегральная токсичность и фитотоксичность в опытных образцах составляют 5 и 24% соответственно по сравнению с 23 и 40% в контрольных образцах.
Результаты микробиологических исследований показывают, что титр внесенных микроорганизмов в течение срока наблюдения снижается на порядок.
Пример 5. Биоремедиация почвы, загрязненной глифосатом в условиях полевого эксперимента.
Для биоремедиации используют два участка размером 1×2 метра каждый. В почву вносят по 20 мл Граунд Био на 2 м2 из расчета 100 л/га (60±10 мг глифосата/кг почвы).
Микробную биомассу штамма бактерий Achromobacter sp. ВКМ В-2534 Д выращивают в ферментере АНКУМ-2. Условия ферментации: жидкая минеральная среда MS1, глифосат в составе гербицида Граунд Био - 250 мг/л, глутамат натрия - 10 г/л, рН 7-7.2, температура +28±1°С, аэрация 50-70% от насыщения. Инокулят готовят, как описано в примере 1, и используют после 36 часов голодания.
Суспензию клеток для интродукции получают, как описано в примере 4, и вносят в почву из расчета 1 литр на 1 м2, титр клеток составляет (1±0.5)×107 кл/г абсолютно сухой почвы.
В контрольном варианте используют почву, загрязненную глифосатом в составе гербицида Граунд Био, без внесения микроорганизмов.
Контроль над процессом биоремедиации осуществляют по изменению количества остаточного глифосата в почве, интегральной токсичности и фитотоксичности, как описано в примере 4. Продолжительность опыта 28 суток.
Результаты, приведенные в таблице 6, показывают, что в процессе биоремедиации почвы в условиях полевого опыта с использованием предлагаемого штамма бактерий Achromobacter sp. ВКМ В-2534 Д деструкции подвергается 75% находящегося в почве глифосата по сравнению с 40% в контроле.
Водные экстракты из почвы после биоремедиации не обладают интегральной токсичностью по отношению к дафниям Daphnia magna и фитотоксичностыо по показа гелям тест-культуры овса.
Показано, что штамм бактерий Achromobacter sp.ВКМ В-2534 Д обеспечивает снижение токсичности загрязненной почвы до показателей незагрязненной почвы. Результаты микробиологических исследований показывают, что титр внесенных микроорганизмов в течение срока наблюдения снижается на два порядка.
Таким образом, показано, что предлагаемый штамм бактерий Achromobacter sp. BKM В-2534 Д способен деградировать ряд органофосфонатов, в частности глифосат, метилфосфонат, аминометилфосфонат, фосфоноацетат, 2-аминоэтилфосфонат, N-(фосфонометил)иминодиацетат. Он утилизирует глифосат в высоких концентрациях (до 10 г/л) в жидкой минеральной среде, что в 3 раза выше концентрации, описанной для известного штамма Pseudomonas sp. LBr.
Штамм бактерий Achromobacter sp.BKM В-2534 Д обладает высокой эффективностью деструкции в условиях окружающей среды, не патогеген и может быть использован для очистки почвы и жидких сред от загрязнения глифосатом и другими органофосфонатами.
Предлагаемый способ с использованием штамма бактерий Achromobacter sp. BKM В-2534 Д обеспечивает возможность проведения биоремедиации почв, загрязненных органофосфонатами.
Источники информации
1. Rueppel M., Brightwell В., Schaefer J., Marcel J. "Metabolism and degradation of glyphosate in soil and water." - J. Agric. Food Chem., 1977, vol.25, p.517-528.
2. Strange-Hansen R., Holm P.E, Jacobsen O.S., Jacobsen C.S. "Sorption, mineralization and mobility of N-(phosphonomethyl)glycine (glyphosate) in five different types of gravel." - Pest Manag Sci., 2004, vol.60, No.6, p.570-578.
3. Jacob G.S., Garbow J.R., Hallas L.E., Kimak N.M., Kishore G.M., Schaefer J. "Metabolism of Glyphosate in Pseudomonas sp. Strain LBr." - Appl. Environ. Microbiol, 1988, vol.54, No.12, p.2953-2958.
4. Balthazor Т.М. and Hallas L.E. "Glyphosate-Degrading Microorganisms from Industrial Activated Sludge." - Appl. Environ. Microbiol., 1986. vol.51 No.2, p.432-434.
5. Pipke R., Amrhein N., Jacob G.S., Schaefer J., Kishore G.M. "Metabolism of glyphosate by an Arthrobacter sp.GLP-1." - Eur. J.Biochem., 1987. vol.165, p.267-273.
6. Ермакова И.Т., Шушкова Т.В, Леонтьевский А.А. "Микробная деструкция органофосфонатов почвенными бактериями." - Микробиология, 2008, Т.77, №5, С.689-695.
7. ЕР 0465452 "Degradation of N-phosphonomethylglycine (glyphosate) in an aqueous system and the microorganisms used", 1993-08-26.
8. Getenga М., Kengara F.O. "Mineralization of glyphosate in compost-amended soil under controlled condition." - Bull. Environ. Contam. Toxycol., 2004, vol.72, p.266-275.
9. Moore J.K., Braymer H.D., Larson A.D. "Isolation of a Pseudomonas sp. which utilizes the phosphate herbicide glyphosate." - Appl. Environ. Microbiol., 1983, vol.46, p.316-320.
10. Методическое руководство по биотестированию почвы и воды, утв. Мособлкомприродой, 1994.
11. О.А.Берестецкий. Методы определения токсичности почвы. Микробиологические и биохимические исследования почв, Киев: Урожай, 1971, с.28-31.
цин
название | год | авторы | номер документа |
---|---|---|---|
Штамм бактерий Rhodococcus qingshengii Ac-2143 - деструктор гербицида имазетапира и стимулятор роста растений | 2020 |
|
RU2764119C1 |
Штамм Pseudomonas putida для биодеградации гептила, штамм Rhodococcus erythropolis для биодеградации авиационного керосина и способ биоремедиации почвы, загрязненной компонентами ракетных топлив | 2022 |
|
RU2785601C1 |
СПОСОБ ПОЛУЧЕНИЯ БИОМАССЫ АКТИВИРОВАННЫХ АВТОХТОННЫХ МИКРООРГАНИЗМОВ-БИОДЕСТРУКТОРОВ N-ФОСФОНОМЕТИЛГЛИЦИНА (ГЛИФОСАТА) | 2014 |
|
RU2565561C1 |
МИКРОБНЫЙ ПРЕПАРАТ ДЛЯ БИОРЕМЕДИАЦИИ ПОЧВЫ, ЗАГРЯЗНЕННОЙ НЕФТЬЮ И НЕФТЕПРОДУКТАМИ | 2019 |
|
RU2705290C1 |
БИОПРЕПАРАТ ДЛЯ ОЧИСТКИ ПОЧВ ОТ ЗАГРЯЗНЕНИЙ НЕФТЬЮ И НЕФТЕПРОДУКТАМИ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ | 2007 |
|
RU2378060C2 |
КОМПОЗИЦИЯ БАКТЕРИАЛЬНЫХ ШТАММОВ, СМЕСЬ ДЛЯ БИОРЕМЕДИАЦИИ И ПРИМЕНЕНИЕ УКАЗАННОЙ КОМПОЗИЦИИ ДЛЯ УДАЛЕНИЯ ИЗ ПОЧВЫ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ, А ТАКЖЕ СПОСОБ ОЧИСТКИ ПОЧВЫ ОТ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ | 2013 |
|
RU2601155C2 |
БИОПРЕПАРАТ ДЛЯ БИОРЕМЕДИАЦИИ НЕФТЕЗАГРЯЗНЕННЫХ ПОЧВ ДЛЯ КЛИМАТИЧЕСКИХ УСЛОВИЙ КРАЙНЕГО СЕВЕРА | 2013 |
|
RU2565549C2 |
ПРЕПАРАТ ДЛЯ ОЧИСТКИ ПОЧВ ОТ НЕФТЕЗАГРЯЗНЕНИЙ | 2014 |
|
RU2600868C2 |
СПОСОБ БИОДЕСТРУКЦИИ ГЕПТИЛА - НЕСИММЕТРИЧНОГО ДИМЕТИЛГИДРАЗИНА | 1998 |
|
RU2174553C2 |
ПРЕПАРАТ ДЛЯ БИОДЕГРАДАЦИИ НЕФТЕПРОДУКТОВ "БИОИОНИТ" И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2013 |
|
RU2571219C2 |
Изобретение относится к биотехнологии и представляет собой новый бактериальный штамм Achromobacter sp.BKM В-2534 Д, который может быть использован для очистки почв и жидких сред, например грунтовых и поверхностных вод, загрязненных органофосфонатами. Штамм бактерий Achromobacter sp.Kg 16 был выделен методом накопительных культур из почвы, загрязненной глифосатом, депонирован во Всероссийской коллекции микроорганизмов под номером ВКМ В-2534 Д. Данный штамм утилизирует органофосфонаты: глифосат, метилфосфонат, аминометилфосфонат, фосфоноацетат, 2-аминоэтилфосфонат, N-(фосфонометил)иминодиацетат. Показана, в частности, устойчивость штамма к высоким концентрациям глифосата, что расширяет диапазон его применения, в том числе в аварийных ситуациях. Изобретение позволяет повысить эффективность очистки почв и жидких сред, например грунтовых и поверхностных вод, загрязненных органофосфонатами. 2 н.п.ф-лы., 6 табл.
1. Штамм бактерий Achromobacter sp.BKM В-2534 Д - деструктор органофосфонатов.
2. Способ биоремедиации почв, загрязненных органофосфонатами, включающий внесение бактерий-деструкторов в почву, отличающийся тем, что в почву вносят штамм бактерий Achromobacter sp.BKM В-2534 Д.
MOORE JK | |||
Isolation of a Pseudomonas sp.Which Utilizes the Phosphonate Herbicide Glyphosate | |||
Appl Environ Microbiol | |||
Гребенчатая передача | 1916 |
|
SU1983A1 |
ЕРМАКОВА И.Т | |||
Микробная деструкция органофосфонатов почвенными бактериями | |||
- Микробиология, 2008, т.77, №5, с.689-695 | |||
ЛЕОНТЬЕВСКИЙ А | |||
Невидимые санитары планеты | |||
- Наука в России, 2007, №3, |
Авторы
Даты
2010-10-10—Публикация
2009-02-18—Подача