СПОСОБ ПОЛУЧЕНИЯ АЛЮМОСИЛИКАТНЫХ ОГНЕУПОРНЫХ ИЗДЕЛИЙ Российский патент 2011 года по МПК C04B33/22 

Описание патента на изобретение RU2408557C1

Изобретение относится к технологии керамики и может быть использовано при производстве огнеупорных шамотных и высокоглиноземистых изделий различного назначения.

Известен способ получения огнеупорных высокоглиноземистых изделий, включающий обжиг высокоглиноземистого шамота при температуре 1500°С с последующим его измельчением и рассевом, смешение зернистого наполнителя с глиной - связкой, увлажнение массы, формование изделий, сушка и обжиг изделий при температуре 1400-1450°С [Стрелов, К.К., Кащеев, И.Д., Мамыкин, П.С. Технология огнеупоров / К.К.Стрелов, И.Д.Кащеев, П.С.Мамыкин. - М: Металлургия, 1988. - 528 с.].

Недостатками указанного способа являются недостаточная прочность сырца после сушки, что приводит к увеличению брака, а также невысокая плотность и прочность готовых изделий.

Известен также способ получения огнеупорных изделий на основе высококонцентрированных керамических вяжущих суспензий (ВКВС) высокоглиноземистого шамота, включающий предварительный обжиг сырьевой массы при температуре 1500°С с последующим измельчением и рассевом шамота, приготовление керамической вяжущей суспензии на основе шамота, смешение 60-70% шамотного заполнителя с керамической вяжущей суспензией, формование изделий, их сушку и обжиг [Дороганов, В.А., Пивинский, Ю.Е. Структурно-механические свойства пластифицированных масс на основе ВКВС высокоглиноземистого огнеупора // В.А.Дороганов, Ю.Е.Пивинский // Новые огнеупоры. - 2004. - №12. - С.62-68].

Недостатком указанного способа являются высокая длительность помола при получении ВКВС на основе стабилизированного при высоких температурах шамота, низкая прочность сырца и невысокие физико-механические характеристики готовых изделий.

Изобретение направлено на повышение механической прочности изделий после сушки и обжига.

Технический результат по изобретению достигается тем, что для получения керамической вяжущей суспензии используют алюмосиликатную массу, термоактивированную в интервалах температур 900-1200°С. При этом состав алюмосиликатной массы соответствует составу шамота, который используют для получения заполнителя. Получение керамической вяжущей суспензии осуществляют путем мокрого помола термоактивированной массы с ее постадийной загрузкой до содержания твердой фазы не менее 75% (мас.), жидкая фаза - остальное.

Пример. Брикеты алюмосиликатной массы, состоящие из глинозема (60%, мас.) и огнеупорной каолинитовой глины (40%, мас.), после сушки подвергают термоактивирующему обжигу при температуре 1050°С с последующим охлаждением и дроблением. Полученную термоактивированную массу подвергают мокрому помолу в шаровой мельнице с постадийной загрузкой твердой фазы до получения керамической вяжущей суспензии с содержанием твердой фазы не менее 75%, жидкая фаза - остальное.

Аналогичным образом получали суспензии из алюмосиликатной массы, термоактивированной при температурах 800, 900, 1200 и 1300°С, и шамота в способе по прототипу. Сравнительные характеристики полученных суспензий по предлагаемому способу и способу по прототипу представлены в табл.1. Примеры 2 и 6 табл.1 по предлагаемому способу являются отрицательными.

Таблица 1 Сравнительные характеристики вяжущих суспензий № п.п Способ получения Температура предварительного обжига шамота, °С Время помола, ч Остаток на сите №0063,% Содержание наночастиц, % 1 По прототипу 1500 18 6,1 0,72 2 Предлагаемый 800 17 2,9 0,91 3 900 13 0,1 6,8 4 1050 14 0,1 7,0 5 1200 15 0,3 3,6 6 1300 17 4,2 1,1

В способе получения по прототипу предварительный обжиг шамота при температуре 1500°С приводит к интенсивному спеканию и синтезу основных кристаллических фаз, находящихся в стабильном (неактивном) состоянии. Это увеличивает время помола и затрудняет синтез наночастиц, которые и определяют вяжущие свойства керамической суспензии.

Предлагаемая предварительная термообработка алюмосиликатной сырьевой массы при температурах от 900 до 1200°С способствует активации материала за счет процессов дегидратации глинистых минералов, полиморфных превращений кварца, начала синтеза муллита. При этом интенсифицируется процесс измельчения материала, время помола сокращается на 25-30%, а содержание наночастиц увеличивается почти в 10 раз (до 7%), в десятки раз уменьшается остаток на сите №0063 (табл.1).

Применение алюмосиликатной сырьевой массы, термоактивированной при 800°С (пример 2 табл.1), затрудняет процесс помола суспензии из-за повышенной активности материала. В результате резко возрастает водопотребность системы, ее вязкость и, как следствие, замедляется помол и наработка наночастиц.

Термообработка алюмосиликатной сырьевой массы при 1300°С приводит к быстрой стабилизации активных кристаллических фаз, образующихся при более низких температурах. В результате происходит резкое замедление синтеза наночастиц при помоле, ухудшаются вяжущие свойства керамической суспензии.

Таким образом, при предварительном обжиге алюмосиликатной сырьевой массы оптимальной является температура термоактивации 900-1200°С.

Далее для приготовления формовочной массы в качестве заполнителя использовали стабилизированный шамот после термообработки при температуре 1500°С. Шамот предварительно дробят и в качестве заполнителя используют фракции с размером частиц до 5 мм. Для получения формовочной массы перемешивают керамическую вяжущую суспензию в количестве 30% (мас.) и заполнитель (стабилизированный шамот) в количестве 70%. После формования методом вибропрессования образцы высушили при температуре 100°С и обожгли при температурах 1000, 1200 и 1450°С. Физико-механические характеристики изделий представлены в табл.2. Примеры 3, 7 табл.2 по предлагаемому способу являются отрицательными.

Таблица 2 Физико-механические характеристики изделий № состава Способ получения Температура предварительного обжига шамота, °С Предел прочности при сжатии, МПа после обжига изделий при температуре, °С 100 1000 1200 1450 1 Аналог Нет 12 35 38 40 2 Прототип 1500 5 11 15 20 3 Предлагаемый 800 13 36 42 48 4 900 25 62 66 80 5 1050 30 73 78 88 6 1200 15 47 47 49 7 1300 6 12 22 31

Аналогичным образом по предлагаемой технологии были получены образцы с различным содержанием заполнителя. Для изготовления этих образцов применялась керамическая вяжущая суспензия на основе термоактивированной при температуре 1050°С алюмосиликатной сырьевой массы. Физико-механические характеристики изделий представлены в табл.3. Примеры 1, 4 табл.3 по предлагаемому способу являются отрицательными.

При содержании заполнителя более 80% (пример 1, табл.3) формовочная масса становится очень жесткой, плохо формуется, а после обжига недостаточно спекается, что приводит к снижению прочностных характеристик изделий. При уменьшении содержания заполнителя до 50% масса становится переувлажненной (пример 4, табл.3), отформованные образцы деформируются и не могут быть использованы для дальнейших испытаний.

Таблица 3 Физико-механические характеристики изделий при изменении содержания заполнителя
состава
Содержание заполнителя, % Содержание вяжущего, % Предел прочности при сжатии, МПа, после обжига изделий при температуре, °С Примечание
100 1450 1 80 20 5 35 Жесткая, плохо формуемая масса 2 70 30 30 88 Оптимальный состав 3 60 40 25 82 Оптимальный состав 4 50 50 - - Образцы после формовки деформируются

Таким образом, использование для получения алюмосиликатных огнеупорных изделий керамической вяжущей суспензии на основе термоактивированной алюмосиликатной массы, обладающей повышенным содержанием наночастиц (с размером менее 100 нм), обеспечивает существенное увеличение прочности получаемых изделий после сушки и обжига. Снижается температура предварительной термообработки алюмосиликатной массы для получения искусственного керамического вяжущего с 1500°С (шамот по прототипу) до 900-1200°С, на 20-25% снижается время помола. В результате уменьшаются энергозатраты на получение готовых изделий.

Похожие патенты RU2408557C1

название год авторы номер документа
СПОСОБ ПРИГОТОВЛЕНИЯ КЕРАМИЧЕСКОГО ШЛИКЕРА 2009
  • Евтушенко Евгений Иванович
  • Морева Ирина Юрьевна
  • Бедина Вера Игоревна
  • Дороганов Владимир Анатольевич
  • Скиба Андрей Александрович
RU2392248C1
СПОСОБ ИЗГОТОВЛЕНИЯ АЛЮМОСИЛИКАТНЫХ И КОРУНДОВЫХ ОГНЕУПОРНЫХ ИЗДЕЛИЙ 1998
  • Пивинский Ю.Е.
  • Гришпун Е.М.
  • Рожков Е.В.
RU2153482C2
СПОСОБ ПОЛУЧЕНИЯ ОГНЕУПОРНЫХ ИЗДЕЛИЙ ДЛЯ ФУТЕРОВКИ ТЕПЛОВЫХ АГРЕГАТОВ, ПРЕИМУЩЕСТВЕННО, В ЦВЕТНОЙ МЕТАЛЛУРГИИ 2005
  • Мальцев Сергей Михайлович
RU2303583C2
СПОСОБ ИЗГОТОВЛЕНИЯ ОГНЕУПОРНЫХ МАСС ДЛЯ МОНОЛИТНЫХ ФУТЕРОВОК 1998
  • Пивинский Ю.Е.
  • Гришпун Е.М.
  • Рожков Е.В.
RU2153480C2
СМЕСЬ ДЛЯ ПЕНОБЕТОНА НА ОСНОВЕ НАНОСТРУКТУРИРОВАННОГО ВЯЖУЩЕГО (ВАРИАНТЫ), СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ ПЕНОБЕТОНА (ВАРИАНТЫ) 2009
  • Лесовик Валерий Станиславович
  • Строкова Валерия Валерьевна
  • Череватова Алла Васильевна
  • Павленко Наталья Викторовна
RU2412136C1
ИЗВЕСТКОВО-КРЕМНЕЗЕМИСТОЕ ВЯЖУЩЕЕ, СПОСОБ ПОЛУЧЕНИЯ ИЗВЕСТКОВО-КРЕМНЕЗЕМИСТОГО ВЯЖУЩЕГО И СПОСОБ ПОЛУЧЕНИЯ ФОРМОВОЧНОЙ СМЕСИ ДЛЯ ПРЕССОВАННЫХ СИЛИКАТНЫХ ИЗДЕЛИЙ 2008
  • Лесовик Валерий Станиславович
  • Строкова Валерия Валерьевна
  • Череватова Алла Васильевна
  • Нелюбова Виктория Викторовна
RU2376258C1
СПОСОБ ПОЛУЧЕНИЯ КЛАДОЧНОГО РАСТВОРА ДЛЯ ФУТЕРОВКИ ТЕПЛОВЫХ АГРЕГАТОВ, ПРЕИМУЩЕСТВЕННО, В ЦВЕТНОЙ МЕТАЛЛУРГИИ 2005
  • Мальцев Сергей Михайлович
RU2303581C2
СПОСОБ ПОЛУЧЕНИЯ СУХОЙ ОГНЕУПОРНОЙ КЕРАМОБЕТОННОЙ МАССЫ ДЛЯ ФУТЕРОВКИ ТЕПЛОВЫХ АГРЕГАТОВ, ПРЕИМУЩЕСТВЕННО, В ЦВЕТНОЙ МЕТАЛЛУРГИИ 2005
  • Мальцев Сергей Михайлович
RU2303582C2
СПОСОБ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ С ИСПОЛЬЗОВАНИЕМ ИЗМЕЛЬЧЕННЫХ КРИСТАЛЛИЗОВАННЫХ СТЕКОЛ, ШИХТА ДЛЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ И ЗАПОЛНИТЕЛЬ ДЛЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ 2007
  • Гридчин Анатолий Митрофанович
  • Строкова Валерия Валерьевна
  • Лесовик Руслан Валерьевич
  • Мосьпан Александр Викторович
RU2318771C1
СПОСОБ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ, СЫРЬЕВАЯ ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ И ЗАПОЛНИТЕЛЬ ДЛЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ 2007
  • Гридчин Анатолий Митрофанович
  • Строкова Валерия Валерьевна
  • Лесовик Руслан Валерьевич
  • Мосьпан Александр Викторович
RU2318772C1

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ АЛЮМОСИЛИКАТНЫХ ОГНЕУПОРНЫХ ИЗДЕЛИЙ

Изобретение относится к технологии керамики и может быть использовано при производстве огнеупорных шамотных и высокоглиноземистых изделий различного назначения. Техническим результатом изобретения является увеличение прочности при сжатии изделий. Способ получения алюмосиликатных огнеупорных изделий включает предварительный обжиг сырьевой массы при температурах 900-1200°С с последующим приготовлением на ее основе керамической вяжущей суспензии, смешение шамотного заполнителя в количестве 60-70% и керамической вяжущей суспензии - остальное, формование изделий, их сушку и обжиг. 3 табл.

Формула изобретения RU 2 408 557 C1

Способ получения алюмосиликатных огнеупорных изделий, включающий предварительный обжиг сырьевой массы с последующим приготовлением на ее основе керамической вяжущей суспензии, смешение шамотного заполнителя в количестве 60-70% и керамической вяжущей суспензии - остальное, формование изделий, их сушку и обжиг, отличающийся тем, что предварительный термоактивирующий обжиг сырьевой массы для получения керамической вяжущей суспензии осуществляют при температурах 900-1200°С.

Документы, цитированные в отчете о поиске Патент 2011 года RU2408557C1

ДОРОГАНОВ В.А., ПИВИНСКИЙ Ю.Е
Структурно-механические свойства пластифицированных масс на основе ВКВС высокоглиноземистого шамота
Новые огнеупоры, № 12, 2004, с.62-68
ОГНЕУПОРНАЯ МАССА 1993
  • Кучин В.Д.
RU2081863C1
СПОСОБ ПОЛУЧЕНИЯ ВЯЖУЩИХ СУСПЕНЗИЙ 1989
  • Немец И.И.
  • Трубицын М.А.
  • Богданов В.С.
  • Обод А.П.
  • Кобзев И.В.
RU1665666C
GB 1267919 A, 22.03.1972
ДОРОГАНОВ В.А., ПИВИНСКИЙ Ю.Е
О разжижении и пластификации ВКВС на основе высокоглиноземистого шамота
Новые огнеупоры, № 2, 2004, с.25-29.

RU 2 408 557 C1

Авторы

Евтушенко Евгений Иванович

Пивинский Юрий Ефимович

Зуев Александр Сергеевич

Дороганов Владимир Анатольевич

Морева Ирина Юрьевна

Даты

2011-01-10Публикация

2009-06-15Подача