РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОГО ДЕТЕКТОРА ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ Российский патент 2011 года по МПК G01T1/11 

Описание патента на изобретение RU2408900C1

Изобретение относится к получению рабочего вещества, которое может быть использовано для изготовления термолюминесцентного детектора ионизирующего излучения, использующегося в индивидуальной дозиметрии для определения поглощенных доз персонала; для определения поглощенных доз пациентов при проведении рентгеновской диагностики и терапии; при определении поглощенных доз в поле облучения высокодозовых технологических установок.

Известно такое рабочее вещество, используемое для изготовления алмазных детекторов, как природные алмаз (патент РФ №2167435, МПК G01T 1/24, опубл. 20.05.2001), но, как известно, природные алмазы являются дорогостоящим материалом, к тому же изготовление детекторов проходит через множество стадий, что представляет собой трудоемкую и долговременную работу.

Известен состав (патент SE №424374, МПК G01T 1/115, G01T 1/02, опубл. 12.07.1982), в котором в качестве рабочего вещества для радиационных дозиметров используется смесь LiF, CaF2, CaSO4, Li2SO4. Использование данного многокомпонентного материала предложено в определенных условиях, после чего при помощи температуры происходит преобразование неизвестной поглощенной дозы в количество энергии, а затем ее регистрация. К недостаткам данного метода следует отнести сложность изготовления четырехкомпонентного рабочего вещества, а также проведение нескольких эквивалентных операций для построения калибровки, что затруднено постоянными изменениями свойств окружающей среды.

Известно использование в качестве рабочего вещества для изготовления детекторов материала двуокиси кремния SiO2 (патент РФ №2108598, МПК G01T 1/11, С09К 11/08, опубл. 10.04.1998). К недостаткам данного изобретения относится то, что рабочее вещество только является костноэквивалентным, а это не позволяет давать правильные оценки регистрированной поглощенной дозы в индивидуальной дозиметрии.

Наиболее близким к предлагаемому техническому решению является способ, изложенный в патенте РФ №2200965 (МПК G01T 1/11, опубл. 20.03.2003), в котором предложено использование в качестве рабочего вещества для термолюминесцентного детектора (ТЛД) синтетического ультрадисперсного алмаза (УДА). Для реализации способа использованы алмазы, полученные химическими методами выделения и очистки УДА из алмазно-углеродной шихты с дисперсностью 5 нм.

К недостаткам данного рабочего вещества следует отнести чрезвычайно низкую интенсивность термолюминесцентного сигнала в области доз менее 1 кГр. Следовательно, детектор на основе данного вещества не может быть использован в области доз, характерных для индивидуальной дозиметрии персонала и даже пациентов.

Задачей изобретения является расширение диапазона регистрируемых доз ионизирующего излучения рабочего вещества для расширения дозиметрии как в сторону малых доз (менее 1 кГр), так и в сторону высоких доз (до 100 кГр).

Поставленная задача решается тем, что предлагается в качестве рабочего вещества для термолюминесцентных детекторов ионизирующего излучения использовать смесь ультрадисперсного алмаза, с размером частиц около 5 нм, двуокиси кремния SiO2 и силикатного клея в качестве связующей среды.

Синтез композитного рабочего вещества проводят путем смешивания SiO2 и УДА в пропорциях, мас.%: ультрадисперсный порошок алмаза, с размером частиц около 5 нм - 25-65, SiO2 - 25-65, силикатный клей - остальное, этот состав обеспечивает измерение поглощенных доз в широком диапазоне: по пику, обусловленному поглощением SiO2, с максимумом при 154°С, от 10-4 кГр до 1 кГр и по пику, обусловленному поглощением УДА, с максимумом при 270°С, от 1 кГр до 100 кГр. Вышеописанные диапазоны обусловлены возможностью получения достоверных результатов при использовании данного рабочего вещества (табл.1). Выбор температуры обусловлен регистрацией максимума на кривой термостимулированной люминесценции (ТСЛ) (см. чертеж). Полученное рабочее вещество далее помешают в формы при небольшом надавливании и выдерживают в течение часа при нормальных условиях. Затем вынимают полученные ТЛД и просушивают.

Пример

Смешивают SiO2 и УДА в пропорциях, мас.%: ультрадисперсный порошок алмаза, с размером частиц около 5 нм - 45, SiO2 - 45, силикатный клей - остальное, затем помешают в формы при небольшом надавливании и выдерживают в течение часа при нормальных условиях, вынимают готовые ТЛД и просушивают. Полученные ТЛД обеспечивают измерение поглощенных доз в широком диапазоне: по пику, обусловленному поглощением SiO2, с максимумом при 154°С, от 10-4 кГр до 1 кГр и по пику, обусловленному поглощением УДА, с максимумом при 270°С, от 1 кГр до 100 кГр. Полученное рабочее вещество ткане- и костноэквивалентно.

Примеры использования других массовых соотношений компонентов рабочего вещества приведены в табл.2.

Предлагаемое новое композитное рабочее вещество является не только костноэквивалентным, т.е. его эффективный атомный номер (Z) сравним с эффективным атомным номером костной ткани, что необходимо при регистрации доз в костноэквивалентных материалах, например почвы, керамика, кварц и т.д., но и обладает эквивалентностью мышечной ткани, что необходимо при регистрации поглощенных доз в индивидуальной дозиметрии (близкой по Z к характеристикам воды). Достоинствами вещества являются: расширенные пределы регистрации доз, для которых используются два рабочих пика ТСЛ, эквивалентность материала мышечной ткани человека, что обеспечивает адекватную дозиметрию на ткани человека, например, при использовании в дозиметрии медицинского облучения. Данное рабочее вещество является практически единственным, позволяющим получать возможность дозиметрии в области высоких интенсивностей и плотностей возбуждения, в том числе и импульсного.

Таблица 1 Обоснование пределов определения поглощенных доз Поглощенная доза Результат исследования Пик температуры по двуокиси кремния SiO2 - 154°С менее 0.1 мГр Чувствительность детектора ниже предела регистрации с использованием ТЛ комплексов от 0.1 до 1 кГр Регистрация поглощенных доз, получение достоверных результатов более 1 кГр Нет линейной зависимости на кривой ТСЛ, в связи с чем уменьшается достоверность результатов Пик температуры по УДА - 270°С менее 1 кГр Чувствительность детектора ниже предела регистрации с использованием ТЛ комплексов от 1 до 100 кГр Регистрация поглощенных доз, получение достоверных результатов более 100 кГр Нет линейной зависимости на кривой ТСЛ, в связи с чем уменьшается достоверность результатов

Таблица 2 Примеры параметров № примера Соотношение компонентов (силикатный клей 10%), мас.% Диапазон определения доз, кГр Влияние на (по сравнению с Примером 1): УДА SiO2 пик 154°С пик 270°С костноэквивалентность тканеэквивалентность 10-4-2 60-90 Значительно снижается 2 25 65 10-4-1,7 30-80 снижается 3 35 55 10-2-0,8 0,8-100 снижается 5 55 35 0,1-0,7 0,7-100 Значительно снижается 6 65 25

Похожие патенты RU2408900C1

название год авторы номер документа
СПОСОБ РЕГИСТРАЦИИ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ С ИСПОЛЬЗОВАНИЕМ АЛМАЗА 2001
  • Алукер Н.Л.
  • Еременко А.Н.
RU2200965C2
ТЕРМОЛЮМИНОФОР 2017
  • Ягодин Виктор Валерьевич
  • Ищенко Алексей Владимирович
  • Шульгин Борис Владимирович
  • Гилязетдинова Гульнара Фраиловна
  • Сарычев Максим Николаевич
  • Иванов Владимир Юрьевич
  • Ахмадуллина Наиля Сайфулловна
  • Лысенков Антон Сергеевич
  • Каргин Юрий Федорович
  • Солнцев Константин Александрович
RU2668942C1
СПОСОБ ИЗМЕРЕНИЯ ВЫСОКИХ И СВЕРХВЫСОКИХ ДОЗ, НАКОПЛЕННЫХ В ТЕРМОЛЮМИНЕСЦЕНТНЫХ ДЕТЕКТОРАХ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОСКИДА АЛЮМИНИЯ, В ТОМ ЧИСЛЕ ПРИ ОБЛУЧЕНИИ В УСЛОВИЯХ ПОВЫШЕННЫХ ТЕМПЕРАТУР ОКРУЖАЮЩЕЙ СРЕДЫ 2014
  • Абашев Ринат Мансурович
  • Власов Максим Игоревич
  • Мильман Игорь Игориевич
  • Моисейкин Евгений Витальевич
  • Сарычев Максим Николаевич
  • Соловьев Сергей Васильевич
  • Сюрдо Александр Иванович
  • Хохлов Георгий Константинович
RU2570107C1
СПОСОБ ПОЛУЧЕНИЯ РАБОЧЕГО ВЕЩЕСТВА ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОГО ДЕТЕКТОРА НЕЙТРОНОВ 2008
  • Черепанов Александр Николаевич
  • Шульгин Борис Владимирович
  • Мильман Игорь Игоревич
  • Кружалов Александр Васильевич
  • Упорова Юлия Юрьевна
  • Ищенко Алексей Владимирович
  • Королева Татьяна Станиславна
  • Кидибаев Мустафа Мусаевич
RU2357273C1
СПОСОБ ТЕРМОХИМИЧЕСКОЙ ОБРАБОТКИ РАБОЧЕГО ВЕЩЕСТВА ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОГО ДЕТЕКТОРА НА ОСНОВЕ КРИСТАЛЛОВ ОКСИДА БЕРИЛЛИЯ 2006
  • Кружалов Александр Васильевич
  • Горбунов Сергей Владимирович
  • Иванов Владимир Юрьевич
  • Мильман Игорь Игоревич
  • Огородников Игорь Николаевич
  • Таусенев Дмитрий Сергеевич
  • Шульгин Борис Владимирович
RU2303276C1
РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОГО ДЕТЕКТОРА НЕЙТРОНОВ 2008
  • Черепанов Александр Николаевич
  • Шульгин Борис Владимирович
  • Мильман Игорь Игориевич
  • Кружалов Александр Васильевич
  • Упорова Юлия Юрьевна
  • Королева Татьяна Станиславна
  • Кидибаев Мустафа Мусаевич
RU2445646C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ТЕРМОЛЮМИНЕСЦЕНТНОГО ДОЗИМЕТРА 2012
  • Амосов Владимир Николаевич
  • Немцев Григорий Евгеньевич
  • Родионов Николай Борисович
  • Терентьев Сергей Александрович
RU2504802C1
РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОЙ ДОЗИМЕТРИИ РЕНТГЕНОВСКОГО И ГАММА-ИЗЛУЧЕНИЯ 2017
  • Ягодин Виктор Валерьевич
  • Ищенко Алексей Владимирович
  • Шульгин Борис Владимирович
  • Гилязетдинова Гульнара Фраиловна
  • Ахмадуллина Наиля Сайфулловна
  • Лысенков Антон Сергеевич
  • Каргин Юрий Федорович
  • Солнцев Константин Александрович
RU2656022C1
РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОГО ДОЗИМЕТРА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ 1996
  • Алукер Н.Л.
  • Алукер Э.Д.
RU2108598C1
ТЕРМОЛЮМИНОФОР 2017
  • Шульгин Борис Владимирович
  • Мамытбеков Жайлоо Кыдырович
  • Сарычев Максим Николаевич
  • Кидибаев Мустафа Мусаевич
  • Иванов Владимир Юрьевич
  • Черепанов Александр Николаевич
  • Мамытбеков Уланбек Кыдырович
RU2663296C1

Реферат патента 2011 года РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОГО ДЕТЕКТОРА ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

Изобретение относится к получению рабочего вещества, которое может быть использовано для изготовления термолюминесцентного детектора ионизирующего излучения, использующегося в индивидуальной дозиметрии для определения поглощенных доз персонала; для определения поглощенных доз пациентов при проведении рентгеновской диагностики и терапии; при определении поглощенных доз в поле облучения высокодозовых технологических установок. Технический результат - расширение диапазона регистрируемых доз ионизирующего излучения рабочего вещества по пику, обусловленному поглощением SiO2, с максимумом при 154°С, от 10-4 кГр до 1 кГр и по пику, обусловленному поглощением УДА, с максимумом при 270°С, от 1 кГр до 100 кГр. Рабочее вещество для термолюминесцентных детекторов ионизирующего излучения включает нанодисперсный порошок алмаза с размером частиц около 5 нм, порошок материала на основе SiO2, размельченный до крупности <0,08 мм, и силикатный клей в качестве связующего двух материалов. Синтез композитного рабочего вещества проводят путем смешивания SiO2 и УДА в пропорциях, мас.%: ультрадисперсный порошок алмаза с размером частиц около 5 нм - 25-65, SiO2 - 25-65, силикатный клей - остальное. 1 ил., 2 табл.

Формула изобретения RU 2 408 900 C1

Рабочее вещество для термолюминесцентных детекторов ионизирующего излучения, включающее ультрадисперсный алмаз и связующее, отличающееся тем, что оно дополнительно содержит двуокись кремния при следующем соотношении компонентов, мас.%:
ультрадисперсный алмаз 25-65
двуокись кремния 25-65
силикатный клей в качестве связующего остальное

Документы, цитированные в отчете о поиске Патент 2011 года RU2408900C1

СПОСОБ РЕГИСТРАЦИИ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ С ИСПОЛЬЗОВАНИЕМ АЛМАЗА 2001
  • Алукер Н.Л.
  • Еременко А.Н.
RU2200965C2
РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОГО ДОЗИМЕТРА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ 1996
  • Алукер Н.Л.
  • Алукер Э.Д.
RU2108598C1
СПОСОБ ИЗГОТОВЛЕНИЯ АЛМАЗНЫХ ДЕТЕКТОРОВ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ 2000
  • Алтухов А.А.
  • Татьянина Н.А.
  • Еремин Н.В.
  • Шустров А.В.
  • Мироненко И.А.
  • Кобозева Г.А.
RU2167435C1
JP 3229188 A, 11.10.1991.

RU 2 408 900 C1

Авторы

Алукер Надежда Леонидовна

Юрьева Юлия Борисовна

Даты

2011-01-10Публикация

2009-11-25Подача