Изобретение относится к порошковой металлургии, в частности к порошковым коррозионно-стойким материалам на основе железа, используемым для изготовления узлов трения, работающих в агрессивных средах, например, в нефтедобывающей, химической промышленности.
Известен антифрикционный коррозионно-стойкий материал - легированный чугун типа нирезист (Машиностроение: Энциклопедия. М.: Машиностроение, 2001). Недостатком этого материала является низкая коррозионная стойкость.
Наиболее близким к заявляемому является порошковый коррозионно-стойкий материал на основе железа, содержащий 0,1-0,3% углерода, 10-15% никеля, 2-3% молибдена, 16-20% хрома, 15-30% меди (патент РФ №2302477, C22C 33/02, опубл. 10.07.2007).
Недостатком этого материала являются его низкие триботехнические свойства в условиях водной смазки, что ограничивает область его применения.
Настоящее изобретение решает задачу повышения триботехнических свойств порошковых нержавеющих сталей в условиях водной смазки.
Поставленная задача достигается тем, что порошковый коррозионно-стойкий материал на основе железа содержит хром, никель, молибден, углерод и медь при следующем соотношении, мас.%:
Медь в материал вводят методом инфильтрации.
Возможность осуществления изобретения может быть показана на примере получения материалов Х12Н9М1,5Д20-пр, 100Х12Н9М1,5Д20-пр, 200Х12Н9М1,5Д20-пр, Х8Н6М1Д20-пр, 100Х8Н6М1Д20-пр и 200Х8Н6М1Д20-пр с оптимальным содержанием компонентов в заявляемых пределах.
Для получения материала порошки исходных компонентов смешивают с сухой смазкой, полученную смесь прессуют при давлении 400-600 МПа. Пористость образцов после прессования составляет 15-18%.
Спекание проводят в восстановительной атмосфере или вакууме при температуре 1150±10°С, совмещая с инфильтрацией медью.
Триботехнические испытания проводили по схеме втулка - ступица на стенде в условиях односторонней нагрузки на вал. Одностороннюю нагрузку на радиальную пару, работающую в режиме водной смазки (5-7 л/ч), задавали сменными грузиками массой от 10 до 200 Н, скорость вращения двигателя составляла 2910 об/мин. Время испытаний при каждой нагрузке 60 мин. Скорость износа определяли путем замера изменения массы втулки. В процессе испытаний фиксировали изменение момента на валу двигателя, исходя из полученных значений рассчитывали коэффициент трения в разные периоды времени. За максимальную нагрузку принято значение, при котором наблюдается катастрофический износ пары.
Коррозионные испытания материалов проводили в соответствии с ГОСТ 9.506-87 весовым методом при температурах от 20±2°С до 80±3°С в статических (без перемешивания раствора) и динамических (перемешивание раствора с помощью магнитной мешалки) условиях в следующих средах:
1) среда NACE (водный раствор 5% NaCl + 3% HCl) в соответствии с ASTM B117-97;
2) синтетическая пластовая вода (состав по ГОСТ 9.506-87, в г/л: CaCl2·6H2O 34; MgCl2·6H2O 17; NaCl 163; CuSO4·2H2O 0,14) с добавлением 20 г/л H2S.
В таблице 1 приведены триботехнические свойства заявляемого материала, а также прототипа и аналога в условиях смазки водой, в таблицах 2 и 3 - скорость коррозии в различных водных средах.
Согласно данным триботехнических испытаний (таблица 1) новое соотношение компонентов дает возможность повысить нагрузку на пару трения и позволяет обеспечить работоспособность пар трения в широком диапазоне нагрузок (до 200 Н) при сохранении коррозионной стойкости материалов.
Как следует из данных, приведенных в таблицах 2 и 3, предлагаемые материалы имеют скорость коррозии в неперемешиваемой (статические условия) солянокислой среде ниже аналога, в перемешиваемой (динамические условия) ниже аналога и прототипа. Скорость коррозии в синтетической пластовой жидкости, содержащей сервоводород, ниже аналога и на уровне прототипа.
Кроме того, снижение содержания дорогостоящих легирующих элементов, таких как никель, хром и молибден, приведет к снижению стоимости заявляемого материала.
название | год | авторы | номер документа |
---|---|---|---|
ПОРОШКОВЫЙ КОРРОЗИОННО-СТОЙКИЙ МАТЕРИАЛ | 2005 |
|
RU2302477C2 |
СПЕЧЁННЫЕ КОРРОЗИОННОСТОЙКИЕ МАТЕРИАЛЫ НА ОСНОВЕ ЖЕЛЕЗА | 2014 |
|
RU2584832C2 |
ПОРОШКОВЫЙ ИЗНОСО- КОРОЗИОННО-СТОЙКИЙ МАТЕРИАЛ НА ОСНОВЕ ЖЕЛЕЗА | 2013 |
|
RU2523648C1 |
СТУПЕНЬ ПОГРУЖНОГО НАСОСА | 2000 |
|
RU2193115C2 |
АНТИФРИКЦИОННЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ЖЕЛЕЗА | 2014 |
|
RU2597452C2 |
ПОРОШКОВЫЙ АНТИФРИКЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ЖЕЛЕЗА | 2004 |
|
RU2283890C2 |
МЕТАЛЛОКОМПОЗИТНЫЙ ФРИКЦИОННЫЙ СПЛАВ | 2019 |
|
RU2718243C1 |
Способ формирования антикоррозионного покрытия на изделиях из низкоуглеродистой стали | 2016 |
|
RU2649218C1 |
СПЕЧЕННЫЙ АНТИФРИКЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ЖЕЛЕЗА | 1995 |
|
RU2101380C1 |
КОРРОЗИОННО-СТОЙКАЯ НЕМАГНИТНАЯ ИЗНОСОСТОЙКАЯ СТАЛЬ | 1996 |
|
RU2116374C1 |
Изобретение относится к порошковой металлургии, в частности к порошковым коррозионно-стойким материалам на основе железа. Может применяться для изготовления узлов трения, работающих в агрессивных средах, например, в нефтедобывающей, химической промышленности. Порошковый коррозионно-стойкий материал содержит, мас.%: хром 7-15; никель 4-9; молибден до 1,8; углерод до 2,0; медь 15-25; железо - остальное. Полученный материал обладает высокими триботехническими свойствами в условиях водной смазки. 3 табл.
Порошковый коррозионно-стойкий материал на основе железа, содержащий хром, никель, молибден, углерод и введенную методом инфильтрации медь, отличающийся тем, что он содержит указанные компоненты при следующем соотношении, мас.%:
ПОРОШКОВЫЙ КОРРОЗИОННО-СТОЙКИЙ МАТЕРИАЛ | 2005 |
|
RU2302477C2 |
Спеченный материал на основе железа | 1990 |
|
SU1772201A1 |
СТУПЕНЬ ПОГРУЖНОГО НАСОСА | 2000 |
|
RU2193115C2 |
Кипятильник для воды | 1921 |
|
SU5A1 |
Кипятильник для воды | 1921 |
|
SU5A1 |
Способ и приспособление для нагревания хлебопекарных камер | 1923 |
|
SU2003A1 |
Авторы
Даты
2011-02-10—Публикация
2009-11-26—Подача