СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ И СКОРОСТИ ДВИЖЕНИЯ НИЖНЕЙ ГРАНИЦЫ ОБЛАЧНОСТИ Российский патент 2011 года по МПК G01W1/00 G01S17/95 

Описание патента на изобретение RU2414728C2

Изобретение относится к метеорологии, к способам для определения физических параметров атмосферы, и позволяет определять направление и скорость движения нижней границы облачности (НГО).

Известен способ измерения высоты, скорости и направления движения нижней границы облаков посредством измерителя [2], заключающийся в измерении угловых координат выбранного участка нижней границы облачности относительно двух неподвижных матричных фотоприемников, имеющих регулярную структуру положения пикселей, и расположенных таким образом, что их оптические оси имеют известные вертикальные и горизонтальные углы и лежат в одной плоскости, а углы обзора перекрываются на определенной высоте между ними. Недостатками данного способа являются проблема выбора и идентификации одного и того же фрагмента облачности, которая выполняется вручную оператором, повышенная чувствительность системы к погрешностям фотоприемников, сравнительно высокая стоимость изготовления и эксплуатации измерителя, малый участок обзора и, как следствие, сложности и высокой погрешности в определении направления и скорости движения в случаях присутствия распределенного поля облачности, превышающего поле зрения прибора, когда идентификация выбранного участка нижней границы облачности невозможна, то есть такая система может работать только при высоких контрастах (облако-просвет) излучения "разорванных форм облачности": кучевых, слоисто-кучевых, мощно-кучевых облаков. Способ не может использоваться при вихревых структурах форм облачности.

Задачей, на решение которой направлено данное изобретение, является автоматизация процесса сканирования и анализа облачного поля.

Технический результат - автоматизация, повышение точности определения направления и скорости движения нижней границы облачности как днем, так и ночью в реальном масштабе времени по смещению ее пространственной структуры собственного излучения и расширение функциональных возможностей метеорологических наблюдений.

Сравнение заявляемого способа с прототипом позволило установить соответствие его условию "новизна". При сравнении заявляемого способа с другими известными техническими решениями не выявлены сходные признаки, что позволяет сделать вывод о соответствии условию "изобретательский уровень".

Способ поясняется чертежами. На фиг.1 приведен пример отображения кадра изображения по собственному излучению облачности (темный цвет) в проекции на плоскость; на фиг.2 приведено изображение преобразованного кадра в выбранный момент времени и через интервал Δt.

Указанный технический результат при осуществлении изобретения достигается посредством широкопанорамной автоматизированной сканирующей системы [1], которая осуществляет непрерывное круговое сканирование в диапазоне собственного излучения поля облачности по альмукантарату за время, при котором пространственная структура излучения облачного поля остается неизменной. За это время регистрируется ряд значений энергетической яркости, или радиационной температуры облачного поля через каждый градус, или минуты дуги, то есть определяется высота НГО, однозначно связанной с радиационной температурой. После завершения записи данных угол наклона сканирующего зеркала изменяется, цикл повторяется, регистрируется следующая строка. Через заданное количество строк сканирующее зеркало широкопанорамной автоматизированной сканирующей системы возвращается в исходное начальное положение, цикл повторяется, записывается следующий кадр.

Таким образом, регистрируется набор матриц, где по горизонтали - N значений, а по вертикали - М. Каждое из N*M значений представляет собой конкретную область - изображение в инфракрасной области на небесной сфере. Оценив высоту НГО по значению энергетической яркости радиационной температуры, строится проекция собственного излучения облачности на плоскость (фиг.1). Затем осуществляется

формы матрицы для перехода от угловых координат к декартовым координатам (фиг.2). Поскольку изображение проекции облачного поля строится вне зависимости от его реальной высоты, то линейный масштаб отдельной ячейки зависит от конкретной высоты НГО и определяется по формуле

,

где Ннго - высота НГО (в метрах), Hpxl - условная высота НГО (в пикселях) для построения изображения проекции НГО, А - выбранный размер ячейки (в пикселях).

Для определения вектора движения ряда кадров производится попарное сравнение всех соседних кадров, и для каждой пары определяется направление сдвига. Для определения сдвига между матрицами M1 и М2 (фиг.2) вычисляется ряд значений меры различия между матрицей M1 и смещенной матрицей М2. В качестве меры различия используется суммарное значение разностей излучения ячеек

Минимальному значению меры различия соответствует пара значений (Δх,Δу) - наиболее вероятное смещение второго кадра относительно первого.

Вычислив смещения для всего набора кадров, можно построить ломаную линию, усреднение которой даст вектор движения НГО, на выбранном интервале времени. Координаты вектора (х, у) показывают, что на выбранном интервале времени НГО сместилась от начального положения на х ячеек по оси абсцисс и у ячеек по оси ординат. Перейти к метрическим координатам можно исходя из линейного размера ячейки. Зная интервал времени Δt, в течение которого производились измерения, и координаты вектора (х, у) определяются составляющие скорости Vx и Vy, и затем скорость V

и направление движения НГО (угол φ)

Точность вычисления скорости и направления движения достигается за счет суммирования и усреднения множества отдельных векторов на малых промежутках в реальном масштабе времени.

Источники информации

1. Патент РФ №2331853, МПК G01J 3/06, изобретение "Устройство распознавания форм облачности".

2. Патент РФ №2321029, МПК G01W 1/00, изобретение "Способ определения высоты, направления и скорости движения нижней границы облачности".

Похожие патенты RU2414728C2

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ НИЖНЕЙ ГРАНИЦЫ ОБЛАЧНОСТИ 2011
  • Алленов Михаил Иванович
  • Иванов Владимир Николаевич
  • Третьяков Николай Дмитриевич
  • Фёдоров Вячеслав Олегович
RU2497159C2
СПОСОБ И СИСТЕМА ДАЛЬНЕГО ОПТИЧЕСКОГО ОБНАРУЖЕНИЯ И ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ЛЕТЯЩЕГО В СТРАТОСФЕРЕ ИЛИ НА БОЛЬШОЙ ВЫСОТЕ СО СВЕРХЗВУКОВОЙ СКОРОСТЬЮ ОБЪЕКТА ПО КРИТЕРИЯМ КОНДЕНСАЦИОННОГО СЛЕДА ЕГО СИЛОВОЙ УСТАНОВКИ В АТМОСФЕРЕ 2012
  • Смирнов Дмитрий Владимирович
RU2536769C2
УСТРОЙСТВО РАСПОЗНАВАНИЯ ФОРМ ОБЛАЧНОСТИ 2006
  • Алленов Михаил Иванович
  • Иванов Владимир Николаевич
  • Третьяков Николай Дмитриевич
RU2331853C2
СПОСОБ ОБНАРУЖЕНИЯ ТОЧЕЧНЫХ ТЕПЛОВЫХ ОБЪЕКТОВ НА СЛОЖНОМ АТМОСФЕРНОМ ФОНЕ 2011
  • Жендарёв Михаил Владимирович
  • Соловьёв Виктор Александрович
  • Якименко Игорь Владимирович
  • Кочнов Владимир Викторович
  • Калашников Александр Васильевич
  • Суханов Валерий Владимирович
  • Ходаков Игорь Сергеевич
RU2461017C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНВЕКТИВНЫХ ОПАСНЫХ МЕТЕОРОЛОГИЧЕСКИХ ЯВЛЕНИЙ ДЛЯ ЕВРОПЕЙСКОЙ ТЕРРИТОРИИ РОССИИ 2011
  • Неижмак Андрей Николаевич
  • Расторгуев Игорь Поликарпович
RU2467361C2
СПОСОБ ОЦЕНКИ ОБЛАЧНОСТИ НОЧНОЙ АТМОСФЕРЫ И ДАТЧИК НОЧНОЙ ОБЛАЧНОСТИ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2017
  • Казаковцев Анатолий Федорович
  • Колинько Валерий Иванович
RU2678950C1
СПОСОБ ОБЗОРА НЕБЕСНОЙ СФЕРЫ С КОСМИЧЕСКОГО АППАРАТА ДЛЯ НАБЛЮДЕНИЯ НЕБЕСНЫХ ОБЪЕКТОВ И КОСМИЧЕСКАЯ СИСТЕМА ОБЗОРА НЕБЕСНОЙ СФЕРЫ ДЛЯ НАБЛЮДЕНИЯ НЕБЕСНЫХ ОБЪЕКТОВ И ОБНАРУЖЕНИЯ ТЕЛ СОЛНЕЧНОЙ СИСТЕМЫ, РЕАЛИЗУЮЩАЯ УКАЗАННЫЙ СПОСОБ 2012
  • Богачёв Алексей Викторович
  • Егоров Владимир Леонидович
  • Захаров Андрей Игоревич
  • Кулешов Юрий Павлович
  • Мисник Виктор Порфирьевич
  • Николаев Сергей Львович
  • Орловский Игорь Владимирович
  • Платонов Валерий Николаевич
  • Прохоров Михаил Евгеньевич
  • Рыхлова Лидия Васильевна
  • Шугаров Андрей Сергеевич
  • Шустов Борис Михайлович
  • Яковенко Юрий Павлович
RU2517800C1
СПОСОБ ОБНАРУЖЕНИЯ ТОЧЕЧНЫХ ТЕПЛОВЫХ ОБЪЕКТОВ НА МАСКИРУЮЩЕМ АТМОСФЕРНОМ ФОНЕ 2011
  • Жендарёв Михаил Владимирович
  • Митрофанов Дмитрий Геннадьевич
  • Якименко Игорь Владимирович
  • Кочнов Владимир Викторович
  • Майбуров Дмитрий Генрихович
  • Суханов Валерий Владимирович
  • Гордеев Валерий Михайлович
  • Бессарабов Сергей Александрович
  • Герасимов Валерий Васильевич
  • Скоробогатов Владимир Викторович
  • Злобинова Марина Владимировна
RU2480780C1
СПОСОБ НАВИГАЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА ПО РАДИОЛОКАЦИОННЫМ ИЗОБРАЖЕНИЯМ ЗЕМНОЙ ПОВЕРХНОСТИ С ИСПОЛЬЗОВАНИЕМ ЦИФРОВЫХ МОДЕЛЕЙ МЕСТНОСТИ 2007
  • Киреев Сергей Николаевич
  • Исаев Адам Юнусович
  • Нестеров Юрий Григорьевич
  • Пономарев Леонид Иванович
  • Цыганков Максим Владимирович
RU2364887C2
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ, НАПРАВЛЕНИЯ И СКОРОСТИ ДВИЖЕНИЯ НИЖНЕЙ ГРАНИЦЫ ОБЛАЧНОСТИ 2006
  • Зуев Сергей Викторович
RU2321029C1

Иллюстрации к изобретению RU 2 414 728 C2

Реферат патента 2011 года СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ И СКОРОСТИ ДВИЖЕНИЯ НИЖНЕЙ ГРАНИЦЫ ОБЛАЧНОСТИ

Способ может быть использован для метеорологических наблюдений, например дистанционного определения смерчей, грозовых состояний облачности, тайфунов, а так же наблюдения движения летательных аппаратов. В способе посредством широкопанорамной автоматизированной сканирующей системы осуществляют сканирование в диапазоне собственного излучения поля облачности и регистрируют набор кадров, которые представляют собой набор матриц, где по горизонтали - N значений, а по вертикали - М, и каждое из N*M значений представляет собой конкретную область - изображение в инфракрасной области на небесной сфере. Осуществляют изменение формы матрицы для перехода от угловых координат к декартовым координатам, производят попарное сравнение всех соседних кадров и для каждой пары определяют направление сдвига, для чего определяют наиболее вероятный сдвиг между кадрами. Вычисляют сдвиги для всего набора кадров и строят ломаную линию, усреднение которой дает вектор движения нижней границы облачности, по которому определяют направление и скорость ее движения. Технический результат - автоматизация и повышение точности определения направления и скорости движения нижней границы облачности в реальном масштабе времени и расширение функциональных возможностей метеорологических наблюдений. 2 ил.

Формула изобретения RU 2 414 728 C2

Способ определения направления и скорости движения нижней границы облачности в заданном интервале времени, в котором посредством широкопанорамной автоматизированной сканирующей системы осуществляют сканирование в диапазоне собственного излучения поля облачности, регистрируют набор кадров, которые представляют собой набор матриц, где по горизонтали N значений, а по вертикали - М, и каждое из N·M значений представляет собой конкретную область - изображение в инфракрасной области на небесной сфере, затем осуществляют изменение формы матрицы для перехода от угловых координат к декартовым координатам, производят попарное сравнение всех соседних кадров и для каждой пары определяют направление сдвига, для чего по минимальному значению меры различия между соответствующими матрицами определяют наиболее вероятный сдвиг между кадрами, вычисляют сдвиги для всего набора кадров и строят ломаную линию, усреднение которой дает вектор движения нижней границы облачности в заданном интервале времени, по которому определяют направления и скорости движения нижней границы облачности в заданном интервале времени.

Документы, цитированные в отчете о поиске Патент 2011 года RU2414728C2

СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ, НАПРАВЛЕНИЯ И СКОРОСТИ ДВИЖЕНИЯ НИЖНЕЙ ГРАНИЦЫ ОБЛАЧНОСТИ 2006
  • Зуев Сергей Викторович
RU2321029C1
УСТРОЙСТВО РАСПОЗНАВАНИЯ ФОРМ ОБЛАЧНОСТИ 2006
  • Алленов Михаил Иванович
  • Иванов Владимир Николаевич
  • Третьяков Николай Дмитриевич
RU2331853C2
JP 07066989 А, 10.03.1995
US 7102617 B2, 05.09.2006
RU 2182727 C2, 20.05.2002.

RU 2 414 728 C2

Авторы

Алленов Михаил Иванович

Артюхов Александр Викторович

Иванов Владимир Николаевич

Третьяков Николай Дмитриевич

Даты

2011-03-20Публикация

2009-05-22Подача