СПОСОБ ОБРАБОТКИ ПОРИСТЫХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ Российский патент 2011 года по МПК B05D3/00 

Описание патента на изобретение RU2426607C1

Изобретение предназначено для использования в биомедицине, клеточных технологиях, в частности для изготовления матриксов - носителей клеток, имплантируемых в организм человека для восстановления функционирования пораженного органа.

Конструирование и создание имплантатов на основе объемных пористых матриксов из биодеградируемых полимеров, которые характеризуются высокой биологической безопасностью, а также возможностью контролировать режим их биорезорбции, является одним из важных направлений в биотехнологии.

Объемный полимерный матрикс имеет структуру хаотической трехмерной сетки из тонких полимерных волокон. Вещество волокон занимает 5-10% объема матрикса, остальной объем заполнен газом. Сетка образует систему взаимосвязанных ячеек разного размера. Ячейки с размером в десятки и сотни микрон, многократно превышающим размеры имплантируемых клеток, необходимы для инфильтрации клеток в объем матрикса. Наличие системы ячеек меньшего, микронного и субмикронного, размера необходимо для осуществления подвода питательных веществ и выведения продуктов жизнедеятельности клеток. При этом пространство матрикса, занимаемое твердой фазой, и пустое пространство внутри матрикса односвязны. Это означает, что в объеме матрикса нет замкнутых пустот.

Имплантатом становится матрикс, в который введена необходимая клеточная культура, и в котором она развивается. Трудность перевода полимерного матрикса в имплантат состоит в том, что фактически полимером является чужеродный для клеток и живого организма. Прежде всего, из-за низкой поверхностной энергии, большинство полимеров, применяемых для изготовления матриксов, гидрофобны, что обусловливает их плохую смачиваемость. Сильная гидрофобность - нежелательный фактор, снижающий жизнеспособность клеток, инфильтрованных в матрикс. Для преодоления проблемы на поверхность полимера наносят гидрофильные покрытия или проводят специальную обработку поверхности.

Известен способ нанесения гидрофильных покрытий на поверхность полимерных пленок путем ее обработки неравновесной газоразрядной плазмой. Плазменная обработка изменяет поверхностную энергию полимера и, как следствие, приводит к улучшению гидрофильности и адгезии поверхности (Василец В.Н., Севастьянов В.И. Модифицирование полимерных биоматериалов плазмой газового разряда и вакуумным ультрафиолетовым излучением. В книге: «Энциклопедия низкотемпературной плазмы», Серия Б, т.XI-5 «Прикладная химия плазмы», раздел III «Взаимодействие плазмы с поверхностями органической природы», Москва, изд-во Янус-К, стр.160-172, 2006 г; Василец В.И., Кузнецов А.В., Севастьянов В.И. Регулирование биологических свойств полимерных материалов медицинского назначения с использованием плазмы газового разряда и вакуумного ультрафиолетового излучения. Химия высоких энергий, 2006, т.40, №2, с.105-111; Севастьянов В.И., Василец В.Н. Плазмохимическое модифицирование фторуглеродных полимеров для создания новых гемосовместимых материалов. Российский химический журнал, 2008, т.52, №3, стр.72-80).

С этой целью используются разряды, создающие плазму с энергичными электронами, при низкой энергии ионной и нейтральной компоненты. Разряд должен взаимодействовать с большой поверхностью обрабатываемой среды, то есть быть пространственно однородным, не каналированным. К таким разрядам относится, например, диэлектрический барьерный разряд атмосферного давления (ДБР). Обрабатываемая полимерная пленка вводится в междуэлектродный зазор разряда. В плазме ДБР присутствуют разнообразные активные частицы, которые могут реагировать с поверхностью полимера. Глубины проникновения всех активных частиц в материал не превышают нескольких микрометров. Толщина получаемых покрытий может изменяться от нескольких микрон до сотых их долей. Применение в качестве плазмообразующих газов воздуха, О2, N2, CO2, Ar, NH3, приводит к улучшению гидрофильности. Применение фтор-, водород- и кремнийсодержащих газов и паров (SF6, C2F4, CH4, силоксаны) приводит к образованию на поверхности новых полимерных структур. Поверхность приобретает либо гидрофобность (в случае обработки во фторсодержащих газах), либо гидрофильность.

Основной недостаток этого способа состоит в том, что в случае пористого объемного матрикса плазменное нанесение покрытий на поверхность волокон, образующих его внутреннюю структуру, затруднено. Причина в том, что длина каналов в матриксе составляет миллиметры, а поперечные размеры канала - микроны. Газоразрядная плазма, эффективная при обработке открытых поверхностей полимеров, не проникает в такие каналы.

За прототип выбран СПОСОБ УВЕЛИЧЕНИЯ СМАЧИВАЕМОСТИ ПОРИСТЫХ ТЕЛ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ (патент РФ №2185894, оп. 27.07.2002, МПК B05D 3/06, G01N 13/00). Согласно способу пористое тело, находящееся в корпусе для обработки, подвергают воздействию послеразрядной неионной удаленной плазмой азота, полученной разрядом, возбуждаемым электромагнитной волной в газообразном азоте, что позволяет обрабатывать пористое тело объемно, целиком, так как незаряженные продукты диссоциации азота проникают в пористое тело на глубину порядка 10 см. Пористое тело имеет пористость в пределах от 1 до 50 мкм. Обработка проводится при температуре окружающей среды. Обрабатываемый материал - полиэтилен, полипропилен, изделия из фриттированных порошков. Недостатком способа является то, что обработка с целью повышения смачиваемости идет только продуктами диссоциации азота, т.е. идет изменение только одной характеристики. Для обработки биоматериалов необходимо изменять не только одну характеристику материала - смачиваемость, но и ряд других физико-химических и биологических характеристик поверхности волокон, образующих вещество пористого полимерного материала - матрикса. Т.е. недостатком указанного способа является невозможность непосредственного воздействия электронами и ионами плазмы на поверхность волокон внутренней структуры пористых сред.

Техническим результатом, на который направлено изобретение, является создание технологичного и простого способа обработки внутренних поверхностей пористых полимерных материалов, направленной на регулирование физико-химических свойств поверхности волокон, в том числе ее гидрофильности гидрофобности.

Для этого предложен способ обработки пористых полимерных материалов, заключающийся в воздействии на материал плазменного разряда в объеме пористого полимерного материала в атмосфере газа при атмосферном давлении, при этом помещают пористый материал между электродами, создают в нем электрическое поле с напряженностью меньшей чем пробойная напряженность в газе заданного молекулярного состава при атмосферном давлении, с одновременным воздействием на материал частотно-импульсного пучка электронов с энергией 1-5 МэВ.

При этом пористость материала выше 80%.

При этом используют газы, не вступающие при нормальных условиях в химические реакции с полимерным материалом.

При этом температура обработки не превышает температуру размягчения полимера.

При этом длительность импульсов электронного пучка составляет 1-10 мкс.

При этом импульсный ток пучка 0,01-0,3 А, импульсная плотность тока пучка 0,01-0,3 А/см2, частота следования импульсов 1-100 Гц.

При этом полная радиационная доза материала полимера от электронного пучка не должна превышать 20 кГр.

Электроны в пористом, гетерогенном, веществе материала производят два действия:

1) В объеме газовой фазы, заполняющей пространство между волокнами, и обладающей сравнительно малой плотностью, электронный пучок тормозится сравнительно слабо, но при этом он производит объемную первичную ионизацию газа, заполняющего ячейки. Если при этом на материал наложено электрическое поле достаточной напряженности, то во внутренней структуре материала возникает объемный, пространственно однородный несамостоятельный электрический разряд. Разряд существует, пока пространственную трехмерную сетку материала пронизывает электронный пучок. При этом разряд пространственно однороден, не образует узких токовых каналов. Образующаяся газоразрядная плазма действует на поверхность твердотельной сетки внутри материала, осуществляя ее модификацию в заданном направлении, например увеличивая гидрофильность или повышая биосовместимость материала с соответствующими биологическими объектами. Электроны газоразрядной плазмы не проникают вглубь вещества полимера и не изменяют его объемных физико-химических и биологических характеристик. Но они изменяют молекулярную структуру поверхности волокон, образующих пористый материал, как и в прототипе.

2) В объеме полимерных волокон, твердой фазы, плотность которой на три порядка больше плотности газовой фазы, электроны пучка тормозятся существенно сильнее, производя в веществе полимера различные радиационно-химические процессы, которые приводят к изменению молекулярного состава и структуры полимера. Полная поглощенная полимером радиационная доза от электронного пучка не должна достигать предела, при котором в веществе полимера, образующего матрикс, наступают необратимые изменения физико-химических и биохимических характеристик. Это ограничивает допустимую дозу значением ~20 кГр. Названное значение дозы известно из опыта радиационной стерилизации биомедицинских препаратов и материалов, в том числе и для полиоксибутирата/полиоксивалериата - биорезорбируемого полимера, из которого, в частности, приготавливается пористый материал - матрикс.

Несамостоятельный объемный разряд, поддерживаемый электронным пучком в однородном газе, известен. Химическая эффективность разряда, поддерживаемого электронным пучком в однородном газе, продемонстрирована, например, в работе Ю.Н.Новоселов, В.В.Рыжов, А.И.Суслов. // Письма в ЖТФ, 1998. Т.24. №19. С.41.

Новизна нашего предложения состоит в том, что такой разряд возбуждается в гетерогенной двухфазной среде - пористом полимерном материале. В этой среде твердая фаза существенно влияет на весь разряд, поглощая заметную часть электронов плазмы разряда. Тем не менее такой разряд существует, если в среде нет сплошных перегородок, образующих замкнутые поры, и степень пористости среды достаточно высока - выше 80%.

На фигуре 1 показана принципиальная схема устройства для осуществления указанного способа, где 1 - высоковольтный электрод, 2 - пористый полимер, 3 - сетчатый заземленный электрод, 4 - электронный пучок, 5 - ИВН - источник высокого напряжения, 6 - С - разрядная емкость.

На фигуре 2 показаны осциллограммы токов электронного пучка и разрядов при обработке пористого материала, где 1 - ток заземленного электрода, 2 - мощность СВЧ-магнетрона, возбуждающего резонатор ускорителя, 3 - ток высоковольтного электрода.

В опытах использовались матриксы из полиоксибутирата/полиоксивалериата (ПОБ/ПОВ), с пористостью ε~0,95, имеющие толщину 3-5 мм. Типичные осциллограммы разрядных токов показаны на фигуре 2.

Блок «А» фигуры 2 демонстрирует токи электродов, возбуждаемые электронным пучком. Значение тока высоковольтного электрода может считаться значением тока электронного пучка, дошедшего до него Iпучка≈30 мА, длительность импульса tимп≈3 мкс.

Блок «Б» демонстрирует токи электродов, возбуждаемые разрядом, который поддерживается электронным пучком в межэлектродном зазоре в отсутствие матрикса. Абсолютное значение тока заземленного электрода складывается из тока пучка и тока разряда Iзаземл=Iразр+Iпучка≈1,47 А

Абсолютное значение тока высоковольтного электрода есть разница между током разряда и током пучка =Iразр-Iпучка≈1,0 А. Складывая оба тока, получим Iразр~0,5(Iзаземл+Iвв)~1,4 А. Это примерно в 45 раз превышает ток пучка.

Блок «В» демонстрирует токи электродов, возбуждаемые разрядом, который поддерживается электронным пучком в межэлектродном зазоре в присутствии матрикса. Абсолютное значение тока заземленного электрода складывается из тока пучка и тока разряда Iзаземл=Iразр+Iпучка≈1,25 А

Абсолютное значение тока высоковольтного электрода есть разница между током разряда и током пучка =Iразр-Iпучка≈1,31 А. Складывая оба тока, получим Iразр~0,5(Iзаземл+Iвв)~1,28 А. Это примерно в 43 раза превышает ток пучка.

Импульсная мощность, рассеиваемая в разряде, составляет 6,7 кВт, энерговыделение ~20 мДж/имп.

Оценка дозы излучения, оставляемой в матриксе электронным пучком D, Дж/г=кДж/кг=кГр может быть получена из следующих соображений. Пусть пучок имеет поперечное сечение S=2 см2, тогда масса вещества, облучаемого пучком, будет M=S(λρ)=3,2 г. Тогда доза D=NЄ/M, где N - число импульсов пучка, Є - энергия пучка в импульсе, Дж. В нашем случае произведение (λρ) связано с энергией электронов в пучке, так что (λρ)~0,5ЕМэВ-0,1, где ЕМэВ=3,5 МэВ - энергия электронов в пучке. Отсюда имеем (λρ)~1,6 г/см2. Значение Є~0,3 Дж/имп. Как уже говорилось, допустимое значение дозы D не может превышать Dкр=20 кГр. Отсюда имеем для предельно допустимого числа импульсов: N<DкрМ/Є~200 импульсов.

Как и в других разрядах, в плазме несамостоятельного разряда, поддерживаемого электронным пучком, присутствуют разнообразные активные частицы, которые могут реагировать с поверхностью полимера. Глубины проникновения всех активных частиц в материал не превышают нескольких микрометров. Толщина получаемых покрытий может изменяться от нескольких микрон до сотых их долей. Применение в качестве плазмообразующих газов воздуха, O2, N2, CO2, Ar, NH3, приводит к улучшению гидрофильности. Применение фтор-, водород- и кремнийсодержащих газов и паров (SF6, C2F4, СН4, силоксаны) приводит к образованию на поверхности новых полимерных структур. Поверхность приобретает либо гидрофобность (в случае обработки во фторсодержащих газах), либо гидрофильность.

Таким образом, с помощью несамостоятельного разряда, поддерживаемого электронным пучком в гетерогенной среде, можно осуществлять направленное модифицирование физико-химических характеристик поверхностей волокон, образующих тонкую структуру полимерного материала - пористого матрикса.

Похожие патенты RU2426607C1

название год авторы номер документа
БИОАКТИВНЫЙ РЕЗОРБИРУЕМЫЙ ПОРИСТЫХ 3D-МАТРИКС ДЛЯ РЕГЕНЕРАТИВНОЙ МЕДИЦИНЫ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2013
  • Севастьянов Виктор Иванович
  • Попов Владимир Карпович
RU2533457C1
СПОСОБ ПОЛУЧЕНИЯ АНТИМИКРОБНОЙ ШОВНОЙ НИТИ 2019
  • Кочурков Андрей Александрович
  • Лахтин Валентин Георгиевич
  • Шарапов Виктор Алексеевич
  • Стороженко Павел Аркадьевич
RU2707947C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОГО МАТЕРИАЛА С ИСПОЛЬЗОВАНИЕМ ПЛАЗМЕННОГО РАЗРЯДА 2022
  • Крикотин Виктор Владимирович
  • Свидунович Сергей Николаевич
RU2786769C1
СПОСОБ ПЛАЗМЕННОГО ОСАЖДЕНИЯ ПОЛИМЕРНЫХ ПОКРЫТИЙ И СПОСОБ ГЕНЕРАЦИИ ПЛАЗМЫ 2001
  • Бугров Г.Э.
  • Вавилин К.В.
  • Кондранин С.Г.
  • Кралькина Е.А.
  • Павлов В.Б.
RU2190484C1
Способ радиационной сшивки полимерной изоляции электрических кабелей и проводов и устройство для его осуществления 2017
  • Пушко Ольга Евгеньевна
  • Новиков Владимир Викторович
  • Федчишин Вадим Валентинович
  • Смирнов Александр Ильич
  • Суслов Константин Витальевич
  • Потапов Василий Васильевич
  • Новиков Геннадий Кириллович
RU2662532C1
СПОСОБ ОБРАБОТКИ ПРОТЕЗОВ СОСУДОВ МАЛОГО ДИАМЕТРА 2014
  • Степанова Алёна Олеговна
  • Коробейников Михаил Васильевич
  • Юношев Александр Сергеевич
  • Карпенко Андрей Анатольевич
  • Покушалов Евгений Анатольевич
  • Караськов Александр Михайлович
  • Лактионов Павел Петрович
RU2563994C1
ЦЕЛЛЮЛОЗНЫЕ И ЛИГНОЦЕЛЛЮЛОЗНЫЕ СТРУКТУРНЫЕ МАТЕРИАЛЫ И СПОСОБЫ И СИСТЕМЫ ДЛЯ ПРОИЗВОДСТВА ТАКИХ МАТЕРИАЛОВ 2009
  • Медофф Маршалл
RU2499664C2
ГАЗОВЫЙ ЛАЗЕР 1997
  • Осипов В.В.
  • Иванов М.Г.
RU2148882C1
СПОСОБ ОБРАБОТКИ ПОЛИМЕРОВ 1996
  • Стиннетт Риган У.
  • Вандевендер Дж. Пейс
RU2154654C2
СУБСТРАТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Сакагути Хироказу
  • Такахаси Хироси
  • Уено Йосиюки
  • Сугая Хироюки
RU2413521C2

Иллюстрации к изобретению RU 2 426 607 C1

Реферат патента 2011 года СПОСОБ ОБРАБОТКИ ПОРИСТЫХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ

Изобретение относится к области биомедицины и клеточных технологий и касается способа обработки пористых полимерных материалов. Способ заключается в воздействии на материал плазменного разряда в объеме пористого полимерного материала в атмосфере газа при атмосферном давлении. Помещают пористый материал между электродами, создают в нем электрическое поле с напряженностью меньшей, чем пробойная напряженность в газе заданного молекулярного состава при атмосферном давлении, с одновременным воздействием на материал частотно-импульсного пучка электронов с энергией 1-5 МэВ. Пористость материала должна быть выше 80%. Используют газы, не вступающие при нормальных условиях в химические реакции с полимерным материалом. Температура обработки не должна превышать температуру размягчения полимера. Длительность импульсов электронного пучка составляет 1-10 мкс, импульсный ток пучка 0,01-0,3 А, импульсная плотность тока пучка 0,01-0,3 А/см2, частота следования импульсов 1-100 Гц, а полная радиационная доза материала полимера от электронного пучка не должна превышать 20 кГр. Изобретение обеспечивает создание технологичного и простого способа обработки внутренних поверхностей пористых полимерных материалов, направленного на регулирование физико-химических свойств поверхности волокон, в том числе ее гидрофильности, гидрофобности. 6 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 426 607 C1

1. Способ обработки пористых полимерных материалов, заключающийся в воздействии на материал плазменного разряда в атмосфере газа при атмосферном давлении, отличающийся тем, что помещают материал между электродами, создают в нем электрическое поле с напряженностью меньшей, чем пробойная напряженность в газе заданного молекулярного состава при атмосферном давлении, с одновременным воздействием на материал частотно-импульсного пучка электронов с энергией 1-5 МэВ.

2. Способ по п.1, отличающийся тем, что пористость полимерного материала должна быть выше 80%.

3. Способ по п.1, отличающийся тем, что используют газы, не вступающие при нормальных условиях в химические реакции с полимерным материалом.

4. Способ по п.1, отличающийся тем, что температура обработки не превышает температуру размягчения полимера.

5. Способ по п.1, отличающийся тем, что длительность импульсов электронного пучка составляет 1-10 мкс.

6. Способ по п.1, отличающийся тем, что импульсный ток пучка 0,01-0,3 А, импульсная плотность тока пучка 0,01-0,3 А/см2, частота следования импульсов 1-100 Гц.

7. Способ по п.1, отличающийся тем, что полная радиационная доза материала полимера не должна превышать 20 кГр.

Документы, цитированные в отчете о поиске Патент 2011 года RU2426607C1

СПОСОБ УВЕЛИЧЕНИЯ СМАЧИВАЕМОСТИ ПОРИСТЫХ ТЕЛ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 1997
  • Гюдман Пьер
  • Дессо Одиль
  • Кансьерр Жан-Дени
  • Бедом Венсан
  • Шаватт Филипп
  • Дуэ Жозе
RU2185894C2
СПОСОБ ИМПРЕГНАЦИИ ГИДРОКСИЛСОДЕРЖАЩИХ ПОЛИМЕРОВ 2006
  • Гамзазаде Ариф Исмаилович
  • Никитин Лев Николаевич
  • Саид-Галиев Эрнест Ефимович
  • Хохлов Алексей Ремович
RU2318839C1
СПОСОБ КОНСЕРВАЦИИ ПОРИСТЫХ МАТЕРИАЛОВ 1993
  • Добрусина С.А.
  • Чернина Е.С.
  • Подгорная Н.И.
  • Кочкин В.Ф.
  • Гуляева Р.И.
RU2080192C1
СПОСОБ СУШКИ ЗАЩИТНОГО ПОЛИМЕРНОГО ПОКРЫТИЯ, НАНЕСЕННОГО НА ПОВЕРХНОСТЬ ИЗДЕЛИЯ ИЗ РАСТВОРА, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Перемыщев В.А.
RU2077959C1
WO 03064061 A1, 07.08.2003.

RU 2 426 607 C1

Авторы

Недосеев Сергей Леонидович

Нистратов Виталий Михайлович

Василец Виктор Николаевич

Севастьянов Виктор Иванович

Даты

2011-08-20Публикация

2009-12-11Подача