Изобретение относится к области получения углеродных материалов и может быть использовано для создания наполнителей композиционных материалов, электропроводящих полимерных композитов, газораспределительных слоев в топливных элементах, компонентов смазочных материалов, аккумуляторов водорода, фильтрующих материалов, углеродных электродов литиевых батарей, клеевых композитов, носителей катализаторов, адсорбентов, антиоксидантов при производстве косметики, источников холодной эмиссии электронов, модифицирующих добавок в бетон специального назначения, а также для покрытий, экранирующих СВЧ и радиоизлучения.
Известен способ получения углеродных нанотрубок (патент РФ №2146648, опуб. 20.03.2000 г.), включающий использование гранулированного железо-кобальтового катализатора, который приводится в виброожиженное состояние с помощью вибропривода. Недостатком является наличие пространственных ограничений, которые накладывает пористая структура катализатора на рост нанотрубок.
Известны способы получения нанотрубок с использованием катализаторов, содержащих Fe, Co, Ni и их сплавы. В патенте РФ №2294892, опуб. 10.03.2007 г., описан способ получения нанотрубок из графитовой бумаги. На графитовую бумагу наносят силикагель, содержащий катализатор. В результате модификации графитовой бумаги путем токового отжига образуются углеродные нанотрубки с диаметром в диапазоне 10-1000 нм. Недостатком является широкий разброс диаметров нанотрубок. В патенте РФ №2299851, опуб. 27.03.2007 г., описан способ, по которому для получения нанотрубок используется нанесенный катализатор с размером частиц 1-10 нм. Разложение углеводородов проводят в «кипящем» слое катализатора при температуре 600-800°С. Недостатками являются широкий разброс размеров частиц катализатора и связанные с этим трудности в организации кипящего слоя.
Наиболее близким по технической сущности к предлагаемому изобретению является способ получения волокнистых углеродных структур каталитическим пиролизом ароматических и неароматических углеводородов (патент РФ №2296827, опуб. 10.04.2007 г.), согласно которому используется пылевидный катализатор, содержащий никель, который осаждается в виде слоя толщиной 1-3 мм на поверхности диска, куда подают углеводородный газ и осуществляют его пиролиз. Перемешивание газовой среды в реакторе осуществляется вращением диска с установленными на его поверхности лопастями. Основным недостатком этого метода является то, что катализатор в процессе пиролиза углеводородного сырья находится не в подвижном состоянии, а в виде стационарного слоя, что отражается на качестве получаемого углеродного материала, в частности на разбросе диаметров получаемых наномасштабных нитевидных образований.
Задачей изобретения является повышение качества целевого продукта.
Поставленная задача решается тем, что в способе получения волокнистых углеродных структур каталитическим пиролизом, включающим пиролиз газообразных углеродсодержащих соединений на поверхности металлсодержащего пылевидного катализатора, осуществляемый в проточном реакторе, выполненном с возможностью перемешивания газовой среды, в качестве катализатора используют частицы аэросила, содержащие на поверхности кластеры металлов: никеля, кобальта или железа, полученных до начала пиролиза путем восстановления катализатора, распыляемого в реакторе в токе водородсодержащего газа при одновременном перемешивании газовой среды, а при проведении пиролиза используют восстановленную форму катализатора, находящуюся в реакторе в распыленном состоянии.
Целесообразно перемешивание газовой среды в реакторе осуществлять в режиме кипящего слоя с ультразвуковым диспергированием.
Сущность предлагаемого изобретения заключается в следующем.
Важнейшими параметрами волокнистого углеродного материала являются наружный диаметр углеродных многослойных нанотрубок, их внутренний диаметр и длина, насыпная плотность. В прототипе углеродный материал обладает следующими характеристиками: наружный диаметр от 8 до 100 нм, внутренний диаметр от 6 до 20 нм, длина от 0,5 до 2 мкм, насыпная плотность от 0,4 до 0,46 г/см3, общий объем примесей менее 1,6%. Для улучшения этих характеристик по предлагаемому способу используют нанодисперсный катализатор. Катализатор представляет собой аэросил с размером частиц 4-6 нм, поверхность которого модифицирована кластерами металлов (Ni, Co или Fe) с использованием методов молекулярного наслаивания и ионного обмена (Алесковский В.Б. Химия надмолекулярных соединений. Санкт-Петербург, изд. ЛГУ, 1998 г., стр.256). Малый размер частиц носителя в сочетании с прецизионными методами нанесения активного начала обеспечивает создание каталитических центров малого размера, сравнимого с размерами частиц исходного аэросила, что в конечном счете приводит к образованию более тонких углеродных нанотрубок и уменьшает диапазон изменения их диаметров. Для уменьшения агрегации наноразмерных частиц катализатора и стерических затруднений для роста углеродных нанотрубок катализатор интенсивно перемешивают, создавая режим кипящего слоя с помощью газового потока и ультразвукового диспергатора, рабочий элемент которого вводится в зону реакции. В синтезе используется восстановленная форма катализатора. Металлические кластеры на поверхности аэросила образуются из поверхностных соединений непосредственно в реакторе при температуре 800°С в токе водородсодержащего газа непосредственно перед введением в реактор углеродсодержащих реагентов. Углеродсодержащее сырье подают в реактор в токе инертного газа (аргона, азота) и/или водорода и проводят пиролиз в течение часа при температуре 600-800°С. Температуру синтеза выбирают таким образом, что используемое углеродсодержащее сырье не образует слоя аморфного углерода на поверхности аэросила, свободного от металлических кластеров. В этом случае образование углерода в виде нанотрубок происходит на поверхности частиц металла, нанесенного на аэросил. В качестве углеродсодержащего сырья может использоваться окись углерода, ароматические углеводороды - бензол, толуол, ксилол, этилбензол, нафталин, антрацен или их смеси, неароматические углеводороды, такие как метан, этан, пропан, этилен, пропилен, ацетилен или их смеси, а также органические соединения, содержащие кислород, такие как метанол, этиловый спирт, ацетон. При этом предпочтение отдается этиловому спирту.
Сущность изобретения поясняется примерами.
Пример 1. Берут 10 г кобальтсодержащего аэросила, загружают в вертикальный реактор объемом 200 мл, снабженный ультразвуковым устройством для перемешивания катализатора, подают водородсодержащий газ и нагревают реактор до температуры 800°С. Прокаливание катализатора при этой температуре проводят в течение 60 минут, затем в реактор подают пары этилового спирта в токе инертного газа и/или водорода. Пиролиз проводят в течение одного часа. После этого реактор остужают и газовым потоком переносят углеродный материал с катализатором в специальный бункер, снабженный фильтром для предотвращения уноса мелкодисперсного катализатора. Углеродный продукт отделяют от катализатора с помощью кислотной обработки. Затем образец промывают водой и сушат. Готовый продукт имеет следующие характеристики: наружный диаметр нанотрубок от 8 до 30 нм; внутренний диаметр от 4 до 10 нм; насыпная плотность 0,4 г/см3; общее содержание примесей менее 1,5%; длина от 0,5 до 3 мкм.
Пример 2. Берут 10 г никельсодержащего катализатора и проводят синтез, как в примере 1. Углеродный продукт имеет следующие характеристики: наружный диаметр нанотрубок от 8 до 35 нм; внутренний диаметр от 4 до 12 нм; насыпная плотность 0,4 г/см3; общее содержание примесей менее 1,4%; длина от 0,5 до 3 мкм.
Пример 3. Берут 10 г железосодержащего катализатора и проводят синтез, как в примере 1. Углеродный продукт имеет следующие характеристики: наружный диаметр нанотрубок от 5 до 28 нм; внутренний диаметр от 4 до 10 нм; насыпная плотность 0,38 г/см3; общее содержание примесей менее 1,2%; длина от 0,5 до 3 мкм.
Из примеров видно, что предлагаемый способ получения волокнистых углеродных структур позволяет синтезировать с высокой чистотой более тонкие по сравнению с прототипом нанотрубки, имеющие меньший разброс по диаметрам.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ | 2010 |
|
RU2481889C2 |
СПОСОБ СИНТЕЗА УГЛЕРОДНЫХ НАНОТРУБОК | 2009 |
|
RU2401798C1 |
МЕТАЛЛОКСИДНЫЙ КАТАЛИЗАТОР ДЛЯ ВЫРАЩИВАНИЯ ПУЧКОВ УГЛЕРОДНЫХ НАНОТРУБОК ИЗ ГАЗОВОЙ ФАЗЫ | 2010 |
|
RU2427423C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК И РЕАКТОР ДЛЯ ИХ ПОЛУЧЕНИЯ | 2010 |
|
RU2493097C2 |
СПОСОБ ПОЛУЧЕНИЯ ВОЛОКНИСТЫХ УГЛЕРОДНЫХ СТРУКТУР КАТАЛИТИЧЕСКИМ ПИРОЛИЗОМ | 2005 |
|
RU2296827C1 |
РЕАКТОР СИНТЕЗА УГЛЕРОДНЫХ НАНОТРУБОК | 2009 |
|
RU2401159C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОД-МЕТАЛЛИЧЕСКОГО МАТЕРИАЛА КАТАЛИТИЧЕСКИМ ПИРОЛИЗОМ ЭТАНОЛА | 2012 |
|
RU2516548C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННЫХ УГЛЕРОДНЫХ ВОЛОКОН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2009 |
|
RU2409711C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ | 2010 |
|
RU2455229C2 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ | 2011 |
|
RU2490205C2 |
Изобретение относится к области получения углеродных волокнистых материалов и может быть использовано для создания наполнителей композиционных материалов, газораспределительных слоев в топливных элементах, компонентов смазочных материалов, аккумуляторов водорода, фильтрующих материалов, углеродных электродов литиевых батарей, клеевых композитов, носителей катализаторов, адсорбентов, антиоксидантов при производстве косметики, источников холодной эмиссии электронов, модифицирующих добавок в бетон специального назначения, а также для покрытий, экранирующих СВЧ и радиоизлучения. Способ включает пиролиз газообразных углеродсодержащих соединений на поверхности металлсодержащего пылевидного катализатора в проточном реакторе, выполненном с возможностью перемешивания газовой среды. В качестве катализатора используют частицы аэросила, содержащие на поверхности кластеры металлов: никеля, кобальта или железа. Катализаторы получают до начала пиролиза восстановлением катализатора, распыляемого в реакторе в токе водородсодержащего газа при одновременном перемешивании газовой среды. Целесообразно перемешивание газовой среды в реакторе осуществлять в режиме кипящего слоя с ультразвуковым диспергированием. Изобретение позволяет синтезировать с высокой чистотой более тонкие нанотрубки, имеющие меньший разброс по диаметрам. Наружный диаметр полученных нанотрубок от 5 до 35 нм; внутренний диаметр от 4 до 12 нм; насыпная плотность 0,3-0,4 г/см3; общее содержание примесей менее 1,2-1,5%; длина от 0,5 до 3 мкм. 1 з.п. ф-лы.
1. Способ получения волокнистых углеродных структур каталитическим пиролизом, включающим пиролиз газообразных углеродсодержащих соединений на поверхности металлсодержащего пылевидного катализатора, осуществляемый в проточном реакторе, выполненном с возможностью перемешивания газовой среды, отличающийся тем, что в качестве катализатора используют частицы аэросила, содержащие на поверхности кластеры металлов: никеля, кобальта или железа, полученных до начала пиролиза путем восстановления катализатора распыляемого в реакторе в токе водородсодержащего газа при одновременном перемешивании газовой среды, а при проведении пиролиза используют восстановленную форму катализатора, находящуюся в реакторе в распыленном состоянии.
2. Способ по п.1, отличающийся тем, что перемешивание газовой среды в реакторе осуществляют в режиме кипящего слоя с ультразвуковым диспергированием.
СПОСОБ ПОЛУЧЕНИЯ ВОЛОКНИСТЫХ УГЛЕРОДНЫХ СТРУКТУР КАТАЛИТИЧЕСКИМ ПИРОЛИЗОМ | 2005 |
|
RU2296827C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК | 2007 |
|
RU2338686C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК | 1998 |
|
RU2146648C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК | 2005 |
|
RU2294892C1 |
KR 20040060053 A, 06.07.2004 | |||
US 6808746 B1, 26.10.2004 | |||
WO 2007100306 A1, 07.09.2007. |
Авторы
Даты
2011-08-27—Публикация
2009-12-08—Подача