СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК Российский патент 2007 года по МПК B82B3/00 

Описание патента на изобретение RU2294892C1

Изобретение относится к области вакуумной техники и технологии для получения углеродных нанотрубок из графитовой бумаги, которые применяются в качестве источника автоэлектронной эмиссии, что улучшает рабочие характеристики таких приборов, как плоские мониторы, катодолюминесцентные источники света, рентгеновские трубки. Также нанотрубки используются как добавки к покрытиям, обладающим бактерицидными свойствами, в сенсорных приборах и т.д.

Известен способ получения углеродных нанотрубок путем магнетронного напыления [1]. При использовании магнетрона происходит распыление графитовой мишени с металлическими катализаторами Ni, Y на подложку в вакуумной установке, оснащенную водоохлаждаемым магнетронным узлом, при температурах, близких к комнатной.

И хотя локализация плазмы магнитным полем сильно увеличивает скорость напыления и выход осаждаемого осадка, все же содержание нанотрубок в осадке не превышает 40%. К тому же описанный метод весьма трудоемок.

Известен также наиболее близкий по технической сущности способ получения углеродных нанотрубок из графитовой бумаги в потоке этилена в химическом реакторе, принятый за прототип [2]. Суть метода заключается в нанесении на графитовую бумагу силикагеля, содержащего катализаторы (Ni-Co и Fe). Для образования силикагеля готовится следующий раствор: тетраэтилортосиликат, этанол, водный раствор нитрата металла, который выступает в качестве катализатора образования нанотрубок. Катализаторы, используемые в каталитическом разложении материалов на углеродной основе, представляют собой переходные металлы, в основном это Fe, Со, Ni или их сплавы. Образование силикагеля катализируется добавлением плавиковой кислоты.

Затем графитовая бумага с нанесенным силикагелем помещается в реактор, где происходит ее модификация путем токового отжига. При нагреве образца и подаче в химический реактор смеси газов, содержащей этилен, образуются нанотрубки.

Недостатком этого способа является использование химического реактора, так как водород и этилен, входящие в смесь рабочих газов, являются взрывоопасными. К тому же углеродные нанотрубки, получаемые известным способом, содержат множество дефектов и ограничены диаметром 10-30 нм.

Технический результат в предлагаемом изобретении заключается в получении мало дефектных углеродных нанотрубок с диаметром в диапазоне 10-100 нм при малых затратах и простом техническом решении. Это достигается тем, что в известном способе, включающем модификацию графитовой бумаги с помощью токового отжига с предварительным нанесением силикагеля, токовый отжиг проводят при температурах 650-750°С и давлении (1-5)·10-5 Topp в остаточной атмосфере инертного газа.

Экспериментально было установлено, что в предлагаемом способе углеродные нанотрубки образуются при достижении области температур 650-750°С. Повышение температуры выше 750°С приводит к уменьшению количества нанотрубок в образцах. При температуре ниже 650°С вместо углеродных нанотрубок образуются нановолокна.

В вакуумной камере происходит модификация графитовой бумаги с помощью токового отжига при давлении (1-5)·10-5 Торр. Такой предел обеспечивает минимум остаточной атмосферы инертного газа.

Данный способ был реализован с помощью вакуумной установки, представленной на фиг.1. Она состоит из вакуумной камеры 1, держателей образца 2, натекателя камеры 3, блока питания 4, форвакуумного насоса 5, байпасного 6 и диффузионного 7 клапанов, натекателя 8, паромасляного затвора с азотной ловушкой 9 и высоковакуумного затвора 10.

Предварительно брали графитовую бумагу разных толщин и плотностей. На графитовую бумагу наносили силикагель, содержащий нитрат железа, и сушили при комнатной температуре. Таким образом, получали тонкий слой силиката с равномерным распределением нитрата железа на графитовой бумаге, которая затем помещалась в вакуумную установку, и создавалось давление 10-5 Торр. Далее происходил последовательный отжиг графитовой бумаги в остаточной атмосфере инертного газа. При достижении температуры 650°С начиналось образование углеродных нанотрубок. В данном примере через 2-3 минуты происходило насыщение, и рост нанотрубок прекращался.

Структурные свойства полученных образцов исследовались на электронных микроскопах: просвечивающем электронном микроскопе JEM-2000EXII, растровом электронном микроскопе, нанотехнологическом комплексе "Умка". Непосредственно наблюдались глобулы из нанотрубок (фиг.2) и отдельные нанотрубки (фиг.3). Диаметр нанотрубок в глобулах составляет 10-100 нм. На фиг.4 представлены профили отдельных нанотрубок, диаметр которых составляет 20-40 нм, длина 0,5-1 мкм.

Таким образом, предлагаемый способ позволяет получать нанотрубки с широким диапазоном структурных и физических свойств в необходимых количествах без использования взрывоопасных веществ и сложных установок при малых затратах.

Источник информации

1. Антоненко С.В., Мальцев С.Н., RU 2218299 С1, 17.07.2002.

2. O.Smiljanic, T.Dellero, A.Serventi, G.Lebrun, B.L.Stansfield, J.P.Dodelet, M.Trudeau, S.Desilets "Growth of carbon nanotubes on Ohmically heated carbon paper." // Chemical Physics Letters, 342 (2001), 503-509.

Похожие патенты RU2294892C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОСТРУКТУР 2007
  • Антоненко Сергей Васильевич
  • Малиновская Ольга Сергеевна
  • Мальцев Сергей Николаевич
RU2355625C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК 2002
  • Антоненко С.В.
  • Мальцев С.Н.
RU2218299C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Никитин Сергей Михайлович
  • Яновский Юрий Григорьевич
  • Данилин Александр Николаевич
RU2480398C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК 2010
  • Носачев Леонид Васильевич
RU2442747C2
УГЛЕРОДНОЕ НАНОВОЛОКНО И СПОСОБ ПОЛУЧЕНИЯ МНОГОСТЕННЫХ УГЛЕРОДНЫХ НАНОТРУБОК 2014
  • Предтеченский Михаил Рудольфович
RU2567628C1
СПОСОБ ПОЛУЧЕНИЯ ЗОНДОВ С УГЛЕРОДНЫМИ НАНОТРУБКАМИ 2008
  • Антоненко Сергей Васильевич
  • Малиновская Ольга Сергеевна
RU2369938C1
СПОСОБ ПОЛУЧЕНИЯ ВОЛОКНИСТЫХ УГЛЕРОДНЫХ СТРУКТУР КАТАЛИТИЧЕСКИМ ПИРОЛИЗОМ 2009
  • Постнов Виктор Николаевич
  • Новиков Алексей Геннадьевич
  • Романычев Андрей Иванович
RU2427674C1
СТРУКТУРА И СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛЕВЫХ ЭМИССИОННЫХ ЭЛЕМЕНТОВ С УГЛЕРОДНЫМИ НАНОТРУБКАМИ, ИСПОЛЬЗУЕМЫМИ В КАЧЕСТВЕ КАТОДОВ 2008
  • Красников Геннадий Яковлевич
  • Зайцев Николай Алексеевич
  • Гущин Олег Павлович
  • Орлов Сергей Николаевич
  • Пастухова Юлия Михайловна
RU2391738C2
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ТВЕРДОФАЗНЫХ НАНОСТРУКТУРИРОВАННЫХ МАТЕРИАЛОВ 2005
  • Егоров Иван Владимирович
  • Носачев Леонид Васильевич
RU2299849C2
ВЫСОКОПЛОТНЫЙ ТРЕХМЕРНЫЙ ЭЛЕКТРОПРОВОДЯЩИЙ МИКРО- И МЕЗОПОРИСТЫЙ МАТЕРИАЛ НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК И/ИЛИ МАЛОСЛОЙНЫХ ГРАФЕНОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2020
  • Савилов Сергей Вячеславович
  • Суслова Евгения Викторовна
  • Черняк Сергей Александрович
  • Иванов Антон Сергеевич
  • Архипова Екатерина Анатольевна
RU2744163C1

Иллюстрации к изобретению RU 2 294 892 C1

Реферат патента 2007 года СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК

Изобретение относится к области вакуумной техники и технологии и может быть использовано для получения углеродных нанотрубок из графитовой бумаги, которые применяются в качестве источника автоэлектронной эмиссии, что улучшает рабочие характеристики таких приборов, как плоские мониторы, катодолюминесцентные источники света, рентгеновские трубки и т.д. Сущность изобретения: способ получения углеродных нанотрубок заключается в модификации графитовой бумаги с нанесенным силикагелем с помощью токового отжига. Предварительно на поверхность графитовой бумаги наносится силикагель, содержащий нитраты металлов, используемых в качестве катализатора, в основном это Fe, Co, Ni или их сплавы. Далее бумагу помещают в вакуумную установку и создают давление (1-5)·10-5 Торр. Такой предел обеспечивает минимум остаточной атмосферы инертного газа. Затем происходит модификация графитовой бумаги путем токового отжига. При достижении температуры 650-750°С происходит образование углеродных нанотрубок. Техническим результатом изобретения является получение малодефектных углеродных нанотрубок с диаметром в диапазоне 10-100 нм при малых затратах и простом техническом решении. 4 ил.

Формула изобретения RU 2 294 892 C1

Способ получения углеродных нанотрубок, заключающийся в модификации графитовой бумаги с помощью токового отжига с предварительным нанесением на нее силикагеля, содержащего катализаторы образования нанотрубок, отличающийся тем, что токовый отжиг проводят при температуре 650-750°С в остаточной атмосфере инертного газа при давлении (1-5)·10-5 Торр.

Документы, цитированные в отчете о поиске Патент 2007 года RU2294892C1

O.SMILJANIC et al
Growth of carbon nanotubes on Ohmically heated carbon paper
Chemical Physics Letters
Трепальная машина для обработки лубовых растений 1923
  • Мельников Н.М.
SU342A1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК 2002
  • Антоненко С.В.
  • Мальцев С.Н.
RU2218299C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК 2002
  • Антоненко С.В.
  • Мальцев С.Н.
RU2218299C1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1

RU 2 294 892 C1

Авторы

Антоненко Сергей Васильевич

Малиновская Ольга Сергеевна

Мальцев Сергей Николаевич

Даты

2007-03-10Публикация

2005-07-11Подача