Изобретение относится к области вакуумной техники и технологии для получения углеродных нанотрубок из графитовой бумаги, которые применяются в качестве источника автоэлектронной эмиссии, что улучшает рабочие характеристики таких приборов, как плоские мониторы, катодолюминесцентные источники света, рентгеновские трубки. Также нанотрубки используются как добавки к покрытиям, обладающим бактерицидными свойствами, в сенсорных приборах и т.д.
Известен способ получения углеродных нанотрубок путем магнетронного напыления [1]. При использовании магнетрона происходит распыление графитовой мишени с металлическими катализаторами Ni, Y на подложку в вакуумной установке, оснащенную водоохлаждаемым магнетронным узлом, при температурах, близких к комнатной.
И хотя локализация плазмы магнитным полем сильно увеличивает скорость напыления и выход осаждаемого осадка, все же содержание нанотрубок в осадке не превышает 40%. К тому же описанный метод весьма трудоемок.
Известен также наиболее близкий по технической сущности способ получения углеродных нанотрубок из графитовой бумаги в потоке этилена в химическом реакторе, принятый за прототип [2]. Суть метода заключается в нанесении на графитовую бумагу силикагеля, содержащего катализаторы (Ni-Co и Fe). Для образования силикагеля готовится следующий раствор: тетраэтилортосиликат, этанол, водный раствор нитрата металла, который выступает в качестве катализатора образования нанотрубок. Катализаторы, используемые в каталитическом разложении материалов на углеродной основе, представляют собой переходные металлы, в основном это Fe, Со, Ni или их сплавы. Образование силикагеля катализируется добавлением плавиковой кислоты.
Затем графитовая бумага с нанесенным силикагелем помещается в реактор, где происходит ее модификация путем токового отжига. При нагреве образца и подаче в химический реактор смеси газов, содержащей этилен, образуются нанотрубки.
Недостатком этого способа является использование химического реактора, так как водород и этилен, входящие в смесь рабочих газов, являются взрывоопасными. К тому же углеродные нанотрубки, получаемые известным способом, содержат множество дефектов и ограничены диаметром 10-30 нм.
Технический результат в предлагаемом изобретении заключается в получении мало дефектных углеродных нанотрубок с диаметром в диапазоне 10-100 нм при малых затратах и простом техническом решении. Это достигается тем, что в известном способе, включающем модификацию графитовой бумаги с помощью токового отжига с предварительным нанесением силикагеля, токовый отжиг проводят при температурах 650-750°С и давлении (1-5)·10-5 Topp в остаточной атмосфере инертного газа.
Экспериментально было установлено, что в предлагаемом способе углеродные нанотрубки образуются при достижении области температур 650-750°С. Повышение температуры выше 750°С приводит к уменьшению количества нанотрубок в образцах. При температуре ниже 650°С вместо углеродных нанотрубок образуются нановолокна.
В вакуумной камере происходит модификация графитовой бумаги с помощью токового отжига при давлении (1-5)·10-5 Торр. Такой предел обеспечивает минимум остаточной атмосферы инертного газа.
Данный способ был реализован с помощью вакуумной установки, представленной на фиг.1. Она состоит из вакуумной камеры 1, держателей образца 2, натекателя камеры 3, блока питания 4, форвакуумного насоса 5, байпасного 6 и диффузионного 7 клапанов, натекателя 8, паромасляного затвора с азотной ловушкой 9 и высоковакуумного затвора 10.
Предварительно брали графитовую бумагу разных толщин и плотностей. На графитовую бумагу наносили силикагель, содержащий нитрат железа, и сушили при комнатной температуре. Таким образом, получали тонкий слой силиката с равномерным распределением нитрата железа на графитовой бумаге, которая затем помещалась в вакуумную установку, и создавалось давление 10-5 Торр. Далее происходил последовательный отжиг графитовой бумаги в остаточной атмосфере инертного газа. При достижении температуры 650°С начиналось образование углеродных нанотрубок. В данном примере через 2-3 минуты происходило насыщение, и рост нанотрубок прекращался.
Структурные свойства полученных образцов исследовались на электронных микроскопах: просвечивающем электронном микроскопе JEM-2000EXII, растровом электронном микроскопе, нанотехнологическом комплексе "Умка". Непосредственно наблюдались глобулы из нанотрубок (фиг.2) и отдельные нанотрубки (фиг.3). Диаметр нанотрубок в глобулах составляет 10-100 нм. На фиг.4 представлены профили отдельных нанотрубок, диаметр которых составляет 20-40 нм, длина 0,5-1 мкм.
Таким образом, предлагаемый способ позволяет получать нанотрубки с широким диапазоном структурных и физических свойств в необходимых количествах без использования взрывоопасных веществ и сложных установок при малых затратах.
Источник информации
1. Антоненко С.В., Мальцев С.Н., RU 2218299 С1, 17.07.2002.
2. O.Smiljanic, T.Dellero, A.Serventi, G.Lebrun, B.L.Stansfield, J.P.Dodelet, M.Trudeau, S.Desilets "Growth of carbon nanotubes on Ohmically heated carbon paper." // Chemical Physics Letters, 342 (2001), 503-509.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОСТРУКТУР | 2007 |
|
RU2355625C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК | 2002 |
|
RU2218299C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2480398C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК | 2010 |
|
RU2442747C2 |
УГЛЕРОДНОЕ НАНОВОЛОКНО И СПОСОБ ПОЛУЧЕНИЯ МНОГОСТЕННЫХ УГЛЕРОДНЫХ НАНОТРУБОК | 2014 |
|
RU2567628C1 |
СПОСОБ ПОЛУЧЕНИЯ ЗОНДОВ С УГЛЕРОДНЫМИ НАНОТРУБКАМИ | 2008 |
|
RU2369938C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОЛОКНИСТЫХ УГЛЕРОДНЫХ СТРУКТУР КАТАЛИТИЧЕСКИМ ПИРОЛИЗОМ | 2009 |
|
RU2427674C1 |
СТРУКТУРА И СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛЕВЫХ ЭМИССИОННЫХ ЭЛЕМЕНТОВ С УГЛЕРОДНЫМИ НАНОТРУБКАМИ, ИСПОЛЬЗУЕМЫМИ В КАЧЕСТВЕ КАТОДОВ | 2008 |
|
RU2391738C2 |
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ТВЕРДОФАЗНЫХ НАНОСТРУКТУРИРОВАННЫХ МАТЕРИАЛОВ | 2005 |
|
RU2299849C2 |
ВЫСОКОПЛОТНЫЙ ТРЕХМЕРНЫЙ ЭЛЕКТРОПРОВОДЯЩИЙ МИКРО- И МЕЗОПОРИСТЫЙ МАТЕРИАЛ НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК И/ИЛИ МАЛОСЛОЙНЫХ ГРАФЕНОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2020 |
|
RU2744163C1 |
Изобретение относится к области вакуумной техники и технологии и может быть использовано для получения углеродных нанотрубок из графитовой бумаги, которые применяются в качестве источника автоэлектронной эмиссии, что улучшает рабочие характеристики таких приборов, как плоские мониторы, катодолюминесцентные источники света, рентгеновские трубки и т.д. Сущность изобретения: способ получения углеродных нанотрубок заключается в модификации графитовой бумаги с нанесенным силикагелем с помощью токового отжига. Предварительно на поверхность графитовой бумаги наносится силикагель, содержащий нитраты металлов, используемых в качестве катализатора, в основном это Fe, Co, Ni или их сплавы. Далее бумагу помещают в вакуумную установку и создают давление (1-5)·10-5 Торр. Такой предел обеспечивает минимум остаточной атмосферы инертного газа. Затем происходит модификация графитовой бумаги путем токового отжига. При достижении температуры 650-750°С происходит образование углеродных нанотрубок. Техническим результатом изобретения является получение малодефектных углеродных нанотрубок с диаметром в диапазоне 10-100 нм при малых затратах и простом техническом решении. 4 ил.
Способ получения углеродных нанотрубок, заключающийся в модификации графитовой бумаги с помощью токового отжига с предварительным нанесением на нее силикагеля, содержащего катализаторы образования нанотрубок, отличающийся тем, что токовый отжиг проводят при температуре 650-750°С в остаточной атмосфере инертного газа при давлении (1-5)·10-5 Торр.
O.SMILJANIC et al | |||
Growth of carbon nanotubes on Ohmically heated carbon paper | |||
Chemical Physics Letters | |||
Трепальная машина для обработки лубовых растений | 1923 |
|
SU342A1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК | 2002 |
|
RU2218299C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК | 2002 |
|
RU2218299C1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор | 1923 |
|
SU2005A1 |
Топчак-трактор для канатной вспашки | 1923 |
|
SU2002A1 |
Авторы
Даты
2007-03-10—Публикация
2005-07-11—Подача