Настоящее изобретение относится к области исследования механических свойств материалов путем приложения к ним сжимающих нагрузок. Изобретение может быть использовано в металлургии, машиностроении и минералогии для определения предела прочности (временного сопротивления при сжатии) мелкодисперсных хрупких частиц с переменной площадью сечения, в частности, сферической формы размером от 0,2 до 5 мм, например, карбидов, оксидов и других минералов.
Известен метод определения показателя статической прочности шлифпорошков из синтетических алмазов (ГОСТ 9206-80, приложение 4). Сущность метода заключается в определении значения статической нагрузки, разрушающей алмазные зерна, помещаемые между двумя параллельными пластинами. Для этого обойму с зернами устанавливают на столе разрывной машины под верхней опорой так, чтобы зерно, лежащее на нижней пластине, находилось в поле зрения микроскопа. Включают механизм нагружения и наблюдают в микроскоп момент разрушения зерна, когда неразрушенная часть будет составлять менее половины его первоначального размера. Средний показатель прочности порошка определяют по результатам последовательного разрушения от 50 до 100 зерен по формуле: Pcp=ΣPi/n, где Pi - значение разрушающей нагрузки отдельного зерна, Н, а n - число разрушенных зерен.
Недостатком метода является определение только усилия разрушения, а не предела прочности мелкодисперсных хрупких частиц с переменной площадью сечения как отношения разрушающей нагрузки к площади сечения в момент разрушения.
Известен способ испытания на сжатие отливок из чугуна (ГОСТ 27208-87 Отливки из чугуна. Методы механических испытаний.), по которому изготавливают цилиндрические образцы номинальным диаметром 10, 15, 20, 25 мм, высоту образца устанавливают равной диаметру. Определяют площадь поперечного сечения образца, образец нагружают с помощью разрывной машины осевым сжимающим усилием до разрушения между параллельными опорами со шлифованными ровными плоскостями с твердостью не менее 60 HRC, измеряют при этом максимальную нагрузку, предшествующую разрушению образца, и относят ее к начальной площади поперечного сечения образца.
Недостатком указанного способа испытания на сжатие является его неприменимость к мелкодисперсным образцам, поскольку невозможно изготовить образцы требуемых размеров.
Наиболее близким к заявляемому техническому решению, принятым за прототип, является способ испытания на сжатие цилиндрических образцов (Испытание материалов. Справочник под ред. X.Блюменауэра. М.: Металлургия, 1979, стр.47). Способ заключается в том, что предварительно осуществляют подбор плоскопараллельных полированных опор, применяемых для передачи давления на образец, по твердости материала, которая должна быть большей, чем твердость материала образца. Далее определяют площадь поперечного сечения цилиндрического образца диаметром 10-30 мм, высотой от одного до трех диаметров. Образец устанавливают в разрывную машину между полированными опорами, производят сжатие до разрушения образца, фиксируют усилие в момент разрушения и определяют прочность при сжатии как отношение этого усилия к начальной площади поперечного сечения образца.
Недостатком указанного способа испытания на сжатие является его неприменимость к мелкодисперсным образцам произвольной формы с переменной площадью сечения, в которых разрушение при сжатии происходит не по максимальному сечению образца и, следовательно, невозможно точно определить площадь поперечного сечения места разрушения.
Задачей изобретения является расширение арсенала технических средств механических испытаний, а именно разработка способа испытания на сжатие образцов в виде мелкодисперсных хрупких частиц с переменной площадью сечения, в частности сферической формы размером от 0,2 до 5 мм. Технический результат заключается в реализации этого способа.
Сущность заявляемого способа испытания на сжатие заключается в том, что аналогично прототипу предварительно измеряют размер образца и осуществляют подбор материала опор, применяемых для передачи давления на образец, по твердости. Далее устанавливают образец между полированными опорами и производят сжатие образца между опорами, например, в разрывной машине, при этом определяют усилие в момент разрушения. В отличие от прототипа материал опор выбирают с твердостью меньшей, чем твердость образца, так, чтобы при сжатии образца между опорами на них образовывались отпечатки размером 0,3-0,8 от размера образца. Измеряют размеры отпечатков образца на обеих опорах, вычисляют площади отпечатков и определяют предел прочности при сжатии как отношение усилия разрушения к площади меньшего отпечатка на опорах.
Осуществление способа в указанной совокупности существенных признаков позволяет провести испытание на сжатие образцов в виде мелкодисперсных хрупких частиц с переменной площадью сечения за счет точного определения площади поперечного сечения частицы в месте разрушения по размеру отпечатков, получающихся от внедрения частицы в полированные опоры при сжатии.
Для обеспечения получения четких, пригодных к измерению отпечатков частиц на опорах, материал опор выбирают с твердостью ниже, чем твердость частиц, так, чтобы при сжатии образца между опорами на них образовывались отпечатки размером 0,3-0,8 от размера образца. При размере отпечатка, меньшем 0,3 от размера образца, увеличивается влияние поверхностных дефектов и контактных напряжений на процесс разрушения, что уменьшает достоверность полученных результатов. Кроме того, при измерении отпечатков, меньших, чем 0,3 от размера образца, возрастает погрешность измерения, которая значительно влияет на подсчет прочности и увеличивает разброс данных. При размере отпечатка, большем 0,8 от размера образца, повышается вероятность смыкания опор при испытании за счет их упругой деформации и возможность их незначительного перекоса.
Способ осуществляют следующим образом. Измеряют размер испытуемых образцов. Размер образца в случае испытания равноосной, близкой к сферической форме частицы, устанавливается по максимальному результату измерения. Размер неравноосного образца может рассчитываться как среднее арифметическое замеров. Причем применение предложенного способа для частиц с размером более 5 мм не целесообразно ввиду большой сложности в определении размера отпечатка из-за необходимости выбора очень мягких опор для получения отпечатка, пригодного для измерения. В мягких опорах, как известно, образуется буртик за счет выдавливания металла из лунки, и измерение отпечатка производится с меньшей точностью. Кроме того, закон изменения диаметра отпечатка от глубины внедрения, например шарообразной частицы, при малых глубинах близок к экспоненциальному, в отличие от больших глубин внедрения, где он близок к линейному, поэтому точность измерения при малых глубинах оказывается существенно ниже. Для менее прочных образцов их размер может быть ограничен 1-2 мм, в то время как для прочных частиц размер может достигать 4-5 мм.
Далее выбирают полированные опоры, применяемые для передачи давления на образец, с твердостью меньшей, чем твердость образца, с учетом размера испытуемых частиц и их ориентировочной твердостью. Чем больше твердость частиц и меньше их размер, тем больше должна быть твердость опор. Устанавливают частицу между полированными сторонами опор, производят сжатие образца между опорами, например, в разрывной машине, фиксируют усилие в момент разрушения, измеряют размер и определяют площадь отпечатков на обеих опорах и сопоставляют их с исходными размерами частицы. В случае нахождения размеров этих отпечатков в пределах 0,3-0,8 от исходного размера частицы определяют предел прочности как отношение усилия разрушения к площади меньшего отпечатка. Если размеры отпечатка выходят за пределы 0,3-0,8 размера частицы, то при отпечатке, меньшем 0,3, последующие испытания проводят с использованием пластин меньшей твердости, а при отпечатке, большем 0,8, - большей твердости.
Способ испытания на сжатие был опробован на сферических образцах серого чугуна Сч-38-60, полученных из брызг при его разливке, образцах сложного оксида железа, кремния и алюминия различной дисперсности, полученных методом плазменного распыления, а также образцах из синтетического алмаза в форме многогранника и кальцита (шпата) произвольной формы с переменной площадью сечения, но близкой к равноосной. Результаты испытания предложенного способа для определения предела прочности σсжат. вышеперечисленных образцов представлены в таблице 1.
Анализ полученных результатов показал, что при образовании отпечатка размером 0,3-0,8 от размера образца (образцы №1, 2, 3, 4, 5, 8, 9, 10, 11) способ позволяет определить предел прочности при сжатии как отношение усилия разрушения к площади меньшего отпечатка на опорах. При этом значения полученного по предлагаемому способу предела прочности мелкодисперсных частиц, например, синтетического алмаза, совпадает со значениями предела прочности, полученными на цилиндрических образцах и составившими 1400-1700 кг/мм2. Предел прочности для стандартных образцов серого чугуна Сч 38-60 при сжатии составляет более 130 кг/мм2 (Ю.Келоглу и др. Краткий металловедческий справочник. Кишинев, 1969, стр.97), что полностью подтверждено при реализации предложенного способа (образец 10).
При образовании отпечатка размером большим, чем 0,8 от размера образца (образец 7), результат не получен, поскольку опоры сомкнулись, а разрушения образца не произошло. При образовании отпечатка размером меньшим, чем 0,3 от размера образца (образец 12), отпечаток получился нечетким, точно определить его размеры и предел прочности не представляется возможным. При испытании образцов размером, меньшим 0,2 (образец 6), результат также не был получен из-за смыкания опор.
Поскольку для различных материалов установлена корреляционная связь между пределом прочности и числом твердости, в таблице 2 приведены сравнительные данные полученных результатов со значениями микротвердости испытываемых материалов.
Приведенные в таблице 2 данные соответствуют известным закономерностям изменения соотношения σсж/HV в зависимости от испытываемого материала и находятся в пределах 0,3-0,6 (Замоторин М.И., Зайцева Л.П. Механические испытания металлов, Ленинград, ЛПИ, 1968, стр.64, Ю.Келоглу и др. Краткий металловедческий справочник, Кишинев, 1969, стр.97).
Таким образом, разработан способ испытания на сжатие, позволяющий с большой достоверностью определить предел прочности на сжатие образцов в виде мелкодисперсных хрупких частиц с переменной площадью сечения, в частности сферической формы размером от 0,2 до 5 мм.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ТВЕРДОСТИ МАТЕРИАЛОВ | 2010 |
|
RU2435154C1 |
ВЫСОКОПРОЧНЫЙ СТАЛЬНОЙ ЛИСТ С ПОВЫШЕННОЙ УСТОЙЧИВОСТЬЮ К ЗАМЕДЛЕННОМУ РАЗРУШЕНИЮ И НИЗКОТЕМПЕРАТУРНОЙ УДАРНОЙ ВЯЗКОСТЬЮ И ВЫСОКОПРОЧНАЯ ДЕТАЛЬ, ИЗГОТОВЛЕННАЯ С ЕГО ИСПОЛЬЗОВАНИЕМ | 2014 |
|
RU2625366C2 |
НАПЛАВОЧНЫЙ МАТЕРИАЛ И ДЕТАЛЬ МАШИННОГО ОБОРУДОВАНИЯ, НАПЛАВЛЕННАЯ НАПЛАВЛЕННЫМ МЕТАЛЛОМ | 2012 |
|
RU2570864C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ | 2005 |
|
RU2310183C2 |
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ПРОЧНОСТИ МЕТАЛЛОВ В КОНСТРУКЦИЯХ | 2010 |
|
RU2433383C1 |
СТАЛЬ, ПОДХОДЯЩАЯ ДЛЯ ИНСТРУМЕНТОВ ФОРМОВАНИЯ ПЛАСТМАСС | 2017 |
|
RU2744788C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ | 1991 |
|
RU2032162C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ АДГЕЗИОННОЙ ПРОЧНОСТИ ГАЗОТЕРМИЧЕСКИХ ПОКРЫТИЙ | 1998 |
|
RU2146044C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКОГО КРИТЕРИЯ ПРОЧНОСТИ МАТЕРИАЛОВ | 2003 |
|
RU2234692C1 |
УПРОЧНЯЕМАЯ СТАЛЬ ДЛЯ ПОДЪЕМНЫХ, КРЕПЕЖНЫХ, ЗАЖИМНЫХ И/ИЛИ СВЯЗЫВАЮЩИХ СРЕДСТВ И СОЕДИНИТЕЛЬНЫХ ЭЛЕМЕНТОВ, КОМПОНЕНТ ДЛЯ ТЕХНИКИ ПОДЪЕМА, КРЕПЛЕНИЯ, ЗАЖИМА И/ИЛИ СВЯЗЫВАНИЯ, СОЕДИНИТЕЛЬНЫЙ ЭЛЕМЕНТ И СПОСОБ ЕГО ПРОИЗВОДСТВА | 2012 |
|
RU2579854C2 |
Настоящее изобретение относится к области исследования механических свойств материалов путем приложения к ним сжимающих нагрузок и может быть использовано в металлургии, машиностроении и минералогии для определения предела прочности мелкодисперсных хрупких частиц с переменной площадью сечения, в частности, сферической формы размером от 0,2 до 5 мм, например, карбидов, оксидов и других минералов. Сущность: измеряют размер образца, подбирают материал опор по твердости, устанавливают образец между полированными опорами, сжимают образец между опорами в разрывной машине, определяют усилие в момент разрушения образца. Выбирают материал опор с твердостью меньшей, чем твердость образца, так, чтобы при сжатии образца между опорами на опорах образовывался отпечаток размером 0,3-0,8 от размера образца. Измеряют размеры отпечатков образца на обеих опорах и определяют предел прочности при сжатии как отношение усилия разрушения к площади меньшего отпечатка на опорах. Технический результат: расширение арсенала технических средств механических испытаний. 2 табл.
Способ испытания на сжатие, включающий измерение размера образца, подбор материала опор по твердости, установку образца между полированными опорами, сжатие образца между опорами, например, в разрывной машине, определение усилия в момент разрушения образца, отличающийся тем, что выбирают материал опор с твердостью меньшей, чем твердость образца так, чтобы при сжатии образца между опорами на опорах образовывался отпечаток размером 0,3-0,8 от размера образца, измеряют размеры отпечатков образца на обеих опорах и определяют предел прочности при сжатии как отношение усилия разрушения к площади меньшего отпечатка на опорах.
Классификатор для шлифовального песка | 1939 |
|
SU58708A1 |
Составной образец для испытания хрупких материалов на одноосное сжатие | 1989 |
|
SU1682868A1 |
СПОСОБ ИССЛЕДОВАНИЯ ДЕФОРМАЦИИ МАТЕРИАЛА | 1989 |
|
RU2023252C1 |
CN 201269843 Y, 08.07.2009. |
Авторы
Даты
2011-09-20—Публикация
2010-03-23—Подача