СПОСОБ ПОЛУЧЕНИЯ ТИТАН-, ЦИРКОНИЙ-, ГАФНИЙ-, ГЕРМАНИЙ- И ОЛОВОСОДЕРЖАЩИХ КЕРАМИК Российский патент 2012 года по МПК C04B35/64 C04B35/48 

Описание патента на изобретение RU2440957C1

Изобретение относится к технологии получения высокоплотных керамик из ортофосфатов и ортоарсенатов титана, циркония, гафния, германия и олова, имеющих структуры типа минерала коснарита KZr2(PO4)3 или вольфрамата скандия Sc2(WO4)3. Многофункциональность этих материалов с плотностью, большей 90% от теоретической (рентгенографической), позволяет применять их в изделиях, требующих высокого сопротивления термоудару (огнеупорные футеровки и их элементы, арматура для высокоточной пайки, полупроводниковые подложки, носители катализаторов, оптические скамьи), в электронике (керамические электролиты, газовые сенсоры и топливные элементы), в машиностроении и транспортных системах (компоненты двигателей), в энергетике (радиационно-стойкий теплоизоляционный материал, локализующая матрица для захоронения токсичных отходов, включая радиоактивные), в химической технологии (селективные катализаторы).

Структуры типа коснарита и вольфрамата скандия построены объединением по вершинам LO6-октаэдров и TO4-тетраэдров, образующих трехмерный каркас {[L2(TO4)3]p-}3∞, в котором Т-позиции могут быть заселены Р5+, Si4+, Ge4+, As5+ или S6+, L-позиции - Nb5+, Ta5+, Ti4+, Zr4+, Hf4+, Ge4+, Sn4+, Mo4+, U4+, Sc3+, Y3+, Ln3+(лантаноиды), V3+, Cr3+, Fe3+, Al3+, Ga3+, In3+, Ti3+, Mg2+, Mn2+, Cu2+, Co2+, Ni2+, Zn2+, Na+ и др. (см. статью Петькова В.И. и Орловой А.И. Кристаллохимический подход к прогнозированию теплового расширения соединений со структурой фосфата натрия-дициркония. - Неорганические материалы. 2003. Т.39. №10, с.1177-1188). Часто позиции L каркаса заняты сочетанием этих катионов. Внекаркасные позиции структур способны включать преимущественно малозарядные крупные (структура типа коснарита) и небольшие (структура типа вольфрамата скандия) катионы в степенях окисления от +1 до +4 или оставаться вакантными.

Перечисленные выше сферы применения ортофосфатов и ортоарсенатов требуют получения изделий из указанных керамик с относительной плотностью, близкой к теоретической.

Известно, что основной недостаток керамики - склонность к хрупкому разрушению. Порог разрушения на дефектах типа пустот (между зернами материала) может быть превышен задолго до того, как общая нагрузка на изделие достигнет порогового значения. Поэтому актуальны методы получения высокоплотных монолитных керамик, которые сводят к минимуму число таких дефектов. Одновременно с увеличением плотности улучшаются механические свойства керамик, их термическая стабильность и электропроводность, а скорость химических реакций на их поверхности (растворение, взаимодействие с растворами и расплавами солей) снижается за счет уменьшения удельной поверхности (см. книгу Балкевича В.Л. Техническая керамика. М.: Стройиздат, 1984, с.15-20).

Получение керамик включает этапы синтеза порошков-прекурсоров твердофазным или золь-гель методами, их последующего прессования и спекания при высоких температурах, способствующего формированию высокоплотных изделий.

Известна технология получения керамик из фосфатов NaZr2(PO4)3, Са0.5Zr2(PO4)3, Sr0.5Zr2(PO4)3, Ва0.5Zr2(PO4)3 (см. статью на англ. яз. авторов S.Maschio, A.Bachiorrini, E.Lucchini, S.Bruckner. Synthesis, sintering and thermal expansion of porous low expansion ceramics - J.Europ.Ceram. Soc. 2004. V.24. P.3535-3540), имеющих структуру коснарита, путем прессования порошков соединений при 200 МПа и отжига при 1300°С в течение 2 ч. Недостатками данного способа являются невысокая плотность приготовленных керамик (72-80% от теоретической) и высокое давление прессования.

Увеличение плотности керамик возможно с увеличением температуры отжига (см. статью на англ. яз. авторов D.A.Rega, D.K.Agrawal, C.-Y. Huang, H.A.McKinstry. Microstructure and microcracking behaviour of barium zirconium phosphate (BaZr4P6O24) ceramics - J.Mat.Sci. 1992. V. 27. P.2406-2412): так, при приготовлении керамики состава Ва0.5Zr2(PO4)3, имеющего структуру типа коснарита, путем спекания при 1100-1600°С в течение 0.2-10 ч порошка-прекурсора, полученного золь-гель методом, максимальная относительная плотность керамических образцов - 74% была достигнута в результате отжига порошка-прекурсора при 1600°С в течение часа. Главными недостатками этого способа являются невысокая плотность керамики и экономически невыгодная высокая температура отжига.

Известное производство (компания SMAHT Ceramic, Inc. «SMAHT») керамических изделий с относительной плотностью 73-98.8% из фосфатов циркония со структурой типа коснарита (см., например, патент США №4801566, С04В 35/48, 1989) основано на прессовании порошков указанных материалов при 140-250 МПа и спекании при 1200-1500°С в течение 12-48 ч. Недостатками такого производства являются значительный разброс плотности керамик разного химического состава и экономически невыгодная высокая температура спекания.

Понижения температуры спекания фосфатов можно достичь с помощью введения добавок - оксидов и солей металлов. Так, известна методика приготовления фосфатных керамик Ca1-xSrxZr4(PO4)6 (х=0, 0.25, 0.5, 0.75, 1.0) со структурой коснарита, которую заявитель выбрал в качестве прототипа (см. статью на англ. яз. авторов N.Chakraborty, D.Basu, W.Ficher. Thermal expansion of Ca1-xSrxZr4(PO4)6 ceramics. - J.Europ.Ceram. Soc. 2005. V.24. P.1885-1893). Керамики были получены прессованием порошков фосфатов с 3 и 5 мас.% ZnO при 50 МПа и отжигом при 1100, 1200 и 1300°С в течение 2, 4 и 6 ч. Плотность приготовленных керамик составляла 89-99%. Плотность образцов, полученных при 1300°С в течение 6 ч без спекающей добавки ZnO, составляла 76-84%. Методика имеет ряд существенных недостатков - относительно высокие температуры отжига и большое количество спекающей добавки.

Известно, что повышенное количество добавки ускоряет уплотнение керамик на начальном этапе спекания, а затем, при высоких температурах, способствует росту зерен (рекристаллизации) в ней, обуславливающему уменьшение плотности образцов (см. книгу Летюка Л.М. и Журавлева Г.И. Химия и технология ферритов. Л.: Химия. 1983, с.233-245). Из-за рекристаллизации образцов авторам не удалось достичь плотности, близкой к теоретической, для всех исследованных керамик. В известной работе (см. статью на англ. яз авторов N.Chakraborty, D.Basu, W.Ficher. Thermal expansion of Ca1-xSrxZr4(PO4)6 ceramics. - J.Europ.Ceram. Soc. 2005. V.24. P.1885-1893) также отмечается, что большое количество добавки ZnO приводит к появлению примеси ZrO2 в керамиках в ходе отжига в результате взаимодействия ZnO со спекаемым фосфатом и росту теплового расширения низкорасширяющихся керамик.

Таким образом, основными недостатками способа-прототипа являются высокая температура отжига (выше 1200°С), требующая использования высокотемпературных печей, большое количество спекающей добавки (>3 мас.%), стимулирующей рост зерен керамики при температуре выше 1100°С, препятствующей достижению максимальной плотности и оптимальной микроструктуры материала и приводящей к частичному разложению спекаемого соединения с образованием дополнительных фаз, ухудшающих теплофизические и механические свойства керамики.

Технический результат заявляемого изобретения - получение высокоплотных керамик при уменьшении количества спекающей добавки и температуры спекания за счет экспериментально найденного оптимального режима получения титан-, цирконий-, гафний-, германий- и оловосодержащих керамик со структурой коснарита или вольфрамата скандия.

Заявляемый способ в сравнении с прототипом имеет следующие существенные преимущества:

- не требует температур отжига выше 1050°С, что не приводит к рекристаллизации керамики и ее разрыхлению и экономически целесообразно,

- обеспечивает активное уплотнение керамики с небольшим количеством спекающей добавки, что позволяет избежать появления примесей в керамике и изменения ее свойств,

- позволяет получать высокоплотные керамики со структурами коснарита и вольфрамата скандия разного химического состава,

- открывает возможности получения высокоплотной керамики с термической стабильностью, не превышающей 900°С.

Для достижения указанного технического результата в предлагаемом способе получения титан-, цирконий-, гафний-, германий- и оловосодержащих керамик путем отжига спрессованных порошков, имеющих структуры типа коснарита или вольфрамата скандия, с применением спекающей добавки ZnO, смешивают исходный цирконий- или титансодержащий порошок со структурой коснарита или вольфрамата скандия с добавкой ZnO 0.5-2.0 мас.%, затем полученную смесь прессуют при минимально допустимом давлении 200-300 МПа и подвергают отжигу при 850-1050°С в течение 15-20 ч.

Заявляемый способ осуществляют в следующем порядке. При получении титан-, цирконий-, гафний-, германий- и оловосодержащих керамик со структурой коснарита или вольфрамата скандия путем спекания спрессованных порошков ортофосфатов и ортоарсенатов со структурами коснарита и вольфрамата скандия:

а) смешивают исходный титан-, цирконий-, гафний-, германий- и оловосодержащий порошок со структурой коснарита или вольфрамата скандия с заданным количеством ZnO, выбираемым из интервала 0.5-2 мас.%;

б) прессуют полученную порошковую смесь при давлении 200-300 МПа;

в) осуществляют изотермический отжиг спрессованного порошка при температуре, выбираемой из интервала 850-1050°С, в течение 15-20 ч;

г) охлаждают полученную керамику до комнатной температуры.

Для обоснования существенности признаков заявляемого способа приведены следующие примеры получения керамик со структурой коснарита или вольфрамата скандия (получение гафний-, германий- и оловосодержащих керамик со структурой коснарита или вольфрамата скандия предлагаемым образом также обеспечивает достижение вышеуказанного технического результата).

Пример 1.

Для обоснования оптимального давления прессования навеску порошка NaZr2(PO4)3, приготовленного золь-гель методом с конечной температурой синтеза 1100°С, смешивают с 0.75 мас.% ZnO в агатовой ступке, прессуют при 200-600 МПа и подвергают отжигу при температуре 900-1050°С в течение 20 ч. Теоретическая плотность NaZr2(PO4)3, рассчитанная на основе рентгенографических данных, составляет 3.190 г/см3.

Таблица 1 Давление прессования, МПа Относительная плотность керамик, % Спрессов. при 25°С 900°С 1000°С 1050°С 1200°С 200 63 86 93 95 93 300 66 89 94 96 93 400 68 90 95 97 91 500 68 91 96 98 93 600 70 92 97 97 94

Данные таблицы 1 свидетельствуют, что при температуре спекания 1050°С, обеспечивающей получение керамики с плотностью больше 90%, плотность керамики не зависит от давления прессования. Оптимальным является давление прессования 200-300 МПа. Более низкое давление прессования может приводить к разрушению спрессованных образцов.

Пример 2.

Для обоснования оптимальных количеств спекающей добавки и температуры отжига навеску порошка NaZr2(PO4)3, приготовленного золь-гель методом с конечной температурой синтеза 1100°С, смешивают с 0-5.0 мас.% ZnO в агатовой ступке, прессуют при 300 МПа и подвергают отжигу при температуре 800-1200°С в течение 20 ч. Теоретическая плотность NaZr2(PO4)3, рассчитанная на основе рентгенографических данных, составляет 3.190 г/см3.

Таблица 2 Количество добавки ZnO, мас.% Относительная плотность керамик, % Спрессов. при 25°С 800°С 900°С 1000°С 1050°С 0 67 66 66 66 66 0.25 66 67 73 77 85 0.5 65 68 81 90 94 0.75 66 69 89 94 96 1.0 67 71 91 96 97 1.5 66 75 92 96 98 2.0 67 78 93 97 99

Данные таблицы свидетельствуют, что плотность керамик выше 90% достигается при температуре отжига 900-1050°С и содержании спекающей добавки ZnO 0.5-2,0 мас.%. Увеличение содержания спекающей добавки выше 2 мас.% не приводит к увеличению плотности керамики. Повышение температуры спекания выше 1050°С приводит к разуплотнению керамики.

В сравнении с получением керамик по способу-прототипу данные, приведенные в таблице 2, подтверждают достижение высокой плотности рассматриваемых керамик при меньших количествах спекающей добавки и температурах спекания.

Пример 3.

Для обоснования оптимального времени отжига навески порошка NaZr2(PO4)3, приготовленного золь-гель методом с конечной температурой синтеза 1100°С, смешивают с 0.75 мас.% ZnO в агатовой ступке, прессуют при 300 МПа и подвергают отжигу при температуре 1050°С в течение 5-25 ч. Теоретическая плотность NaZr2(PO4)3, рассчитанная на основе рентгенографических данных, составляет 3.190 г/см3.

Таблица 3 Время, ч Относительная плотность керамик, % 5 79 15 92 20 96 25 97

Плотность керамики увеличивается с увеличением времени отжига до 20 ч. Дальнейшее выдерживание керамики в условиях отжига не приводило к росту ее плотности. Таким образом, оптимальным по длительности является спекание в течение 15-20 ч.

Пример 4.

Для уточнения нижнего порога оптимального температурного интервала отжига в широком интервале составов исходных цирконий- или титансодержащих порошков навески порошков AZr2(PO4)3 (А=Li, К, Cs), ATi2(PO4)3 (А=Li, Na, К), AZr2(AsO4)3 (А=Na, К, Cs), В0.5Zr2(PO4)3 (В=Mg, Са, Sr, Ba), LiZr2(AsO4)x(PO4)3-x, NaZr2(AsO4)x(PO4)3-x, KZr2(AsO4)x(PO4)3-x, CsZr2(AsO4)x(PO4)3-x (x=0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0), Na3MgZr(PO4)3, Na5Zr(PO4)3, приготовленных золь-гель методом с конечной температурой синтеза 1100°С для фосфатов и 900°С - для мышьяксодержащих соединений, смешивают с навеской 0.75 мас.% ZnO в агатовой ступке, прессуют при 300 МПа и подвергают отжигу при температуре 850-1100°С в течение 20 ч.

Таблица 4 Соединение Тип структуры* Температура отжига, °С Относительная плотность керамик, % LiZr2(PO4)3 K 1050 94 KZr2(PO4)3 K 1050 97 CsZr2(PO4)3 K 1050 96 LiTi2(PO4)3 K 1050 87 NaTi2(PO4)3 K 1050 93 KTi2(PO4)3 К 1050 95 NaZr2(AsO4)3 К 850 95 KZr2(AsO4)3 К 850 95 CsZr2(AsO4)3 К 850 96 Mg0.5Zr2(PO4)3 ВС 850 94 Ca0.5Zr2(PO4)3 К 1050 96 Sr0.5Zr2(PO4)3 K 1050 95 Ba0.5Zr2(PO4)3 K 1050 96 Na3MgZr(PO4)3 K 900 96 Na5Zr(PO4)3 K 850 94 LiZr2(PO4)3 ВС 850 89 LiZr2(AsO4)0.5(PO4)2.5 ВС 850 90

Соединение Тип структуры* Температура отжига, °С Относительная плотность керамик, % LiZr2(AsO4)(PO4)2 ВС 850 93 LiZr2(AsO4)1.5(PO4)1.5 ВС 850 94 LiZr2(AsO4)2PO4 ВС 850 92 LiZr2(AsO4)2.5(PO4)0.5 ВС 850 91 LiZr2(AsO4)3 ВС 850 91 NaZr2(AsO4)0.5(PO4)2.5 K 850 93 NaZr2(AsO4)(PO4)2 K 850 94 NaZr2(AsO4)l.5(PO4)1.5 K 850 94 NaZr2(AsO4)2PO4 K 850 95 NaZr2(AsO4)2.5(PO4)0.5 K 850 94 KZr2(AsO4)0.5(PO4)2.5 K 850 94 KZr2(AsO4)(PO4)2 K 850 96 KZr2(AsO4)1.5(PO4)1.5 K 850 97 KZr2(AsO4)2PO4 K 850 97 KZr2(AsO4)2.5(PO4)0.5 K 850 96 CsZr2(AsO4)0.5(PO4)2.5 K 850 94 CsZr2(AsO4)(PO4)2 K 850 95 CsZr2(AsO4)l.5(PO4)l.5 K 850 97 CsZr2(AsO4)2(PO4) K 850 97 CsZr2(AsO4)2.5(PO4)0.5 K 850 96 *Тип структуры: К - коснарит, ВС - вольфрамат скандия

Похожие патенты RU2440957C1

название год авторы номер документа
СПОСОБ ИММОБИЛИЗАЦИИ ЖИДКИХ РАО В КЕРАМИКУ 2010
  • Федоров Юрий Степанович
  • Шмидт Ольга Витальевна
  • Бураков Борис Евгеньевич
  • Гарбузов Владимир Михайлович
  • Кицай Александр Андреевич
  • Петрова Марина Алексеевна
RU2432631C1
СПОСОБ СИНТЕЗА СУЛЬФАТ-ФОСФАТОВ МЕТАЛЛОВ 2016
  • Петьков Владимир Ильич
  • Дмитриенко Антон Сергеевич
  • Суханов Максим Викторович
RU2637244C1
Неорганический поликристаллический сцинтиллятор на основе Sc, Er:ИАГ и способ его получения 2019
  • Лукин Евгений Степанович
  • Попова Нелля Александровна
  • Лучков Андрей Анатольевич
RU2717158C1
Способ синтеза наноразмерного порошкообразного материала на основе скандата лантана 2017
  • Строева Анна Юрьевна
  • Горелов Валерий Павлович
  • Кузьмин Антон Валериевич
  • Новикова Юлия Вячеславовна
  • Косых Алёна Сергеевна
RU2651009C1
ЛЕГКОПЛАВКАЯ СТЕКЛОКОМПОЗИЦИЯ 2018
  • Чакветадзе Джулия Кобаевна
  • Зинина Энжигель Мансуровна
  • Спиридонов Юрий Алексеевич
  • Сигаев Владимир Николаевич
RU2697352C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОГЛОЩАЮЩЕГО СЕРДЕЧНИКА ОРГАНА РЕГУЛИРОВАНИЯ ЯДЕРНОГО РЕАКТОРА 2009
  • Бочаров Олег Викторович
  • Шиков Александр Константинович
  • Неворотин Вадим Кириллович
  • Безумов Валерий Николаевич
  • Бородин Вячеслав Александрович
  • Ефимов Алексей Аркадьевич
RU2440215C2
Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации для аддитивного производства 2022
  • Смирнов Сергей Валерьевич
  • Оболкина Татьяна Олеговна
  • Гольдберг Маргарита Александровна
  • Баринов Сергей Миронович
  • Антонова Ольга Станиславовна
RU2795866C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОГО ТЕРМОСТАБИЛЬНОГО КАТАЛИЗАТОРА КАРКАСНОГО СТРОЕНИЯ ДЛЯ ДЕГИТРАТАЦИИ МЕТАНОЛА В ДИМЕТИЛОВЫЙ ЭФИР (ВАРИАНТЫ) 2019
  • Глухова Ирина Олеговна
  • Асабина Елена Анатольевна
  • Петьков Владимир Ильич
  • Миронова Елена Юрьевна
  • Жиляева Наталья Анатольевна
  • Ярославцев Андрей Борисович
RU2717686C1
ЛАЗЕРНЫЙ МАТЕРИАЛ 2008
  • Захаров Леонид Юрьевич
  • Копылов Юрий Леонидович
  • Комаров Анатолий Алексеевич
  • Кравченко Валерий Борисович
  • Шемет Владимир Васильевич
RU2391754C2
Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации 2017
  • Смирнов Валерий Вячеславович
  • Смирнов Сергей Валерьевич
  • Оболкина Татьяна Олеговна
  • Антонова Ольга Станиславовна
  • Кочанов Герман Петрович
  • Баринов Сергей Миронович
RU2665734C1

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ ТИТАН-, ЦИРКОНИЙ-, ГАФНИЙ-, ГЕРМАНИЙ- И ОЛОВОСОДЕРЖАЩИХ КЕРАМИК

Изобретение относится к технологии получения высокоплотных керамик из ортофосфатов и ортоарсенатов титана, циркония, гафния, германия и олова. Техническим результатом заявляемого изобретения является получение высокоплотных керамик при уменьшении количества спекающей добавки и температуры спекания. Способ получения титан-, цирконий-, гафний-, германий- и оловосодержащих керамик включает смешивание исходных титан-, цирконий-, гафний-, германий- и оловосодержащих порошков со структурой типа коснарита или вольфрамата скандия с добавкой ZnO 0,5-2,0 мас.%. Затем полученную смесь прессуют при минимально допустимом давлении 200-300 МПа и подвергают отжигу при 850-1050°С в течение 15-20 ч. 4 табл.

Формула изобретения RU 2 440 957 C1

Способ получения титан-, цирконий-, гафний-, германий- и оловосодержащих керамик путем отжига спрессованных порошков, имеющих структуры типа коснарита или вольфрамата скандия, с применением спекающей добавки ZnO, отличающийся тем, что смешивают исходный титан-, цирконий-, гафний-, германий- и оловосодержащий порошок со структурой типа коснарита или вольфрамата скандия с добавкой ZnO 0,5-2,0 мас.%, затем полученную смесь прессуют при минимально допустимом давлении 200-300 МПа и подвергают отжигу при 850-1050°С в течение 15-20 ч.

Документы, цитированные в отчете о поиске Патент 2012 года RU2440957C1

N.CHAKRABORTY et al, Thermal expansion of CaSrZr(PO) ceramics, J.Europ.Ceram., 2005, №11, с.1885-1893
Керамический материал 1975
  • Корякова З.В.
  • Кондратов А.Г.
  • Хрящева В.Г.
  • Подзорова Л.А.
  • Ильинов М.В.
  • Краснов В.А.
SU676096A1
US 4801566 A, 31.01.1989
ВСССФЮЗИАЯ I П^Т1К'НО-:аН1!4?СНШБИБЛИОТЕКА^ 0
SU306242A1
ВЫСОКОПРОЧНЫЙ ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕАЛЮМИНИЯ 0
SU260893A1

RU 2 440 957 C1

Авторы

Суханов Максим Викторович

Петьков Владимир Ильич

Даты

2012-01-27Публикация

2010-07-12Подача