СИСТЕМА ТОПЛИВОПИТАНИЯ И РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ Российский патент 2011 года по МПК F02C9/26 

Описание патента на изобретение RU2435971C2

Изобретение относится к области авиационного двигателестроения и может быть использовано в системах (САУ) автоматического управления газотурбинными двигателями (ГТД)

Известно устройство для управления ГТД, содержащее последовательно соединенные топливный насос, дозирующую иглу с датчиком перепада давлений и перепускным клапаном, полость задания перепада давлений которого соединена с выходами тахометрических регуляторов переходных и статических режимов.

Недостатком известного устройства является его низкая эффективность на переходных режимах работы двигателя.

Наиболее близкой к данному изобретению по технической сущности является система топливопитания и регулирования ГТД, содержащая электронный регулятор (ЭР), подключенный к блоку датчиков (БД), последовательно соединенные плунжерный топливный насос переменной производительности (ПН) с сервоприводом, дозирующую иглу (ДИ) с клапаном (КПП) постоянного перепада, управляемая полость которой соединена через электрогидропреобразователь (ЭГП) с ЭР, клапан-останова (КО), распределительный клапан (РК) (Бодлер В.А., Рязанов Ю.А., Шаймарданов Ф.А. «Системы автоматического управления двигателями летательных аппаратов». М., «Машиностроение», 1973 г.)

Недостатком этого устройства является то, что управление расходом топлива в двигатель осуществляется с помощью комплекса ДИ-КПП. Это приводит к следующему.

1. При управлении расходом топлива не учитываются фактические значения плотности топлива и его теплотворной способности. Это снижает статическую точность регулирования параметров двигателя и, как следствие, точность поддержания тяги (мощности) силовой установки (СУ) и точность ограничения предельных параметров газогенератора (температуры газов), что снижает надежность работы двигателя, СУ и безопасность ЛА.

2. Комплекс ДИ-КПП обладает достаточной инерционностью, что снижает динамическую точность управления расходом топлива. Это может привести к ускоренной выработке ресурса газогенератора двигателя, что в конечном итоге снижает его надежность.

3. Комплекс ДИ-КПП является набором деталей точности изготовления. При эксплуатации этот комплекс очень чувствителен к загрязнениям рабочего тела. В качестве рабочего тела в гидромеханических агрегатах САУ ГТД используется топливо. Из-за этого практически невозможно применение рассматриваемого устройства на транспортных ГТД входящих в состав СУ большегрузных автомобилей, танков, тепловозов, где в качестве топлива используется солярка.

Целью изобретения является повышение качества работы системы топливопитания и регулирования и, как следствие, повышение надежности работы ГТД и расширение области его применения.

Поставленная цель достигается тем, что в систему топливопитания и регулирования ГТД, содержащую ЭР, подключенный к БД, последовательно соединенные ПН с сервоприводом, КО, РК, а также ЭГП, дополнительно вводится блок адаптации к характеристикам топлива, подключенный к БД и ЭР и выполненный в виде конструктивно-функционального модуля (КФМ) ЭР, а ЭР через ЭГП подключают к сервоприводу ПН.

На чертеже представлена структурная схема заявляемого устройства.

Устройство содержит ЭР 1, подключенный к БД 2, последовательно соединенные ПН 3 с сервоприводом 4, КО 5, РК 6, а также ЭГП 7, блок 8 адаптации к характеристикам топлива, подключенный к БД 2 и ЭР 1, сервопривод 4 ПН 3 подключен к БД 2 напрямую и к ЭР 1 через ЭГП 7.

Устройство работает следующим образом.

ЭР 1 в зависимости от параметров воздуха на входе в двигатель и параметров ГТД (из БД 2) формирует заданный расход топлива в двигатель по известным программам и законам управления (см., например, книгу Черкасов Б.А. «Автоматика и регулирование ВРД». М., «Машиностроение», 1988 г.).

В блоке 8 формируется фактический расход топлива в двигатель. Происходит это следующим образом.

По измеренным с помощью БД 2 частоте вращения привода ПН 3 (приводится насос от ротора турбокомпрессора двигателя через коробку приводов двигателя) и углу наклона шайбы ПН 3 (не показана) вычисляют объемный расход ПН 3:

где

Gт v - объемный расход насоса,

α нш - угол установки наклонной шайбы насоса,

nтк - частота вращения ротора турбокомпрессора двигателя.

Примеры зависимости (1) приведены в книге Т.М.Башта. «Объемные насосы и гидравлические двигатели гидросистем». М., «Машиностроение», 1974 г.

По приведенной частоте вращения ротора турбокомпрессора (приведение выполняется по измеренным данным, полученным блоком 8 из БД 2) рассчитывается приведенный расход топлива в двигатель:

где

Gт пр. - приведенный расход топлива в двигатель,

nтк пр. - приведенная частота вращения ротора турбокомпрессора двигателя:

где

nтк пр. - приведенная частота вращения ротора турбокомпрессора двигателя,

nтк - измеренная частота вращения ротора турбокомпрессора двигателя,

Твх. - полная температура воздуха на входе в двигатель.

Зависимость (2) является дроссельной характеристикой двигателя, которую снимают в процессе сдаточных испытаний двигателя на стенде. Ее фиксируют и заносят в ПЗУ блока 8, который является КФМ ЭР 1 и содержит устройства ввода-вывода (УВВ) и вычислитель, содержащий процессор, оперативное запоминающее устройство (ОЗУ) и постоянное запоминающее устройство (ПЗУ).

По приведенному расходу топлива в двигатель с помощью измеренных данных, полученных блоком 8 из БД 2, рассчитывается статический расход топлива в двигатель:

где

Gт ст.- статический расход топлива в двигатель,

Gт пр. - приведенный расход топлива в двигатель,

Твх. - полная температура воздуха на входе в двигатель,

Рвх. - полное давление воздуха на входе в двигатель.

По расчетной величине ускорения ротора турбокомпрессора рассчитывается динамическая добавка к статическому расходу топлива в двигатель

где

ΔGт дин. - динамическая добавка к статическому расходу топлива в двигатель,

К - коэффициент, связывающий расход топлива и ускорение ротора турбокомпрессора двигателя (для двигателя ПС-90А2, например, он изменяется от 0,00786 до 0,024),

Птк - измеренная частота вращения ротора турбокомпрессора двигателя.

По статическому расходу топлива и динамической добавке определяется мгновенный весовой расход топлива в двигатель

где

Gт мгн. - мгновенный весовой расход топлива в двигатель,

Gт ст. - статический расход топлива в двигатель,

ΔGт дин. - динамическая добавка к статическому расходу топлива в двигатель.

По мгновенному весовому расходу топлива (формула 6) и объемному расходу топлива (формула 1) рассчитывают «мгновенную» плотность топлива

где

Y мгн. - «мгновенная» плотность топлива,

Gт мгн. - мгновенный весовой расход топлива в двигатель,

Gт v - объемный расход насоса.

Далее «мгновенная» плотность топлива фильтруется (например, с помощью апериодического фильтра первого порядка (см. книгу Каппелини В., Константинидис А.Дж., Эмилиани П. "Цифровые фильтры и их применение", перевод с английского В.Н.Елисеева, под редакцией Н.Н.Слепова. М., «Энергоатомиздат», 1983 г.) и получается текущая плотность топлива Y тек.

По объемному расходу топлива (формула 1) и текущей плотности топлива рассчитывают текущий (фактический) расход топлива

где

Gт тек. - текущий расход топлива в двигатель,

Gт v - объемный расход насоса,

Y тек. - текущая плотность топлива.

Полученный текущий фактический расход топлива из блока 8 передается в ЭР 1. Блок 8 выполнен в виде КФМ ЭР 1, метод и линия передачи могут быть различны, например в агрегате РЭД-90А2, входящем в САУ двигателя ПС-90А2, для передачи данных внутри блока используется стандарт ГОСТ 18977-79 и РТМ 1495-75 с изм. 3 со скоростью 48 Кбит/с ± 25%.

ЭР 1 по величине рассогласования между заданным и фактическим расходом топлива в двигатель формирует управляющее воздействие, которое через ЭГП 7 и сервопривод 4 регулирует производительность ПН 3 и, как следствие, фактический расход топлива в КС.

Таким образом, обеспечивается повышение качества работы системы топливопитания и регулирования за счет учета фактических характеристик топлива и снижения инерционности элементов САУ и, как следствие, повышение надежности работы ГТД и расширение области его применения.

Похожие патенты RU2435971C2

название год авторы номер документа
СПОСОБ УПРАВЛЕНИЯ РАСХОДОМ ТОПЛИВА НА ЗАПУСКЕ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2010
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
RU2435973C1
СПОСОБ УПРАВЛЕНИЯ СИЛОВОЙ УСТАНОВКОЙ ВЕРТОЛЕТА 2010
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
RU2452667C2
СПОСОБ УПРАВЛЕНИЯ РАСХОДОМ ТОПЛИВА В КАМЕРУ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2008
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
RU2439350C2
СПОСОБ УПРАВЛЕНИЯ РАСХОДОМ ТОПЛИВА В МНОГОКОЛЛЕКТОРНУЮ КАМЕРУ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2010
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
RU2435972C1
СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Бондарев Леонид Яковлевич
  • Зеликин Юрий Маркович
  • Кондратов Александр Анатольевич
  • Королёв Виктор Владимирович
  • Марчуков Евгений Ювенальевич
  • Федюкин Владимир Иванович
  • Инюкин Алексей Александрович
RU2490492C1
УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ 2012
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
  • Остапенко Сергей Владимирович
RU2497000C1
УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ 2009
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
RU2439349C2
СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ 2008
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
RU2418962C2
СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ НА ДИНАМИЧЕСКИХ РЕЖИМАХ РАЗГОНА И ДРОССЕЛИРОВАНИЯ 2006
  • Савенков Юрий Семенович
  • Саженков Алексей Николаевич
  • Тимкин Юрий Иванович
  • Трубников Юрий Абрамович
RU2337250C2
СПОСОБ ЗАЩИТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2011
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
RU2493392C2

Иллюстрации к изобретению RU 2 435 971 C2

Реферат патента 2011 года СИСТЕМА ТОПЛИВОПИТАНИЯ И РЕГУЛИРОВАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Изобретение относится к области авиационного двигателестроения и может быть использовано в системах автоматического управления газотурбинными двигателями (ГТД). Сущность изобретения заключается в том, что дополнительно вводится блок адаптации к характеристикам топлива, подключенный к блоку датчиков (БД) и электронному регулятору (ЭР) и выполненный в виде конструктивно-функционального модуля (КФМ) ЭР, а ЭР через электрогидропреобразователь (ЭГП) подключается к сервоприводу плунжерного топливного насоса переменной производительности (ПН). Технический результат от использования изобретения заключается в том, что обеспечивается повышение качества работы системы топливопитания и регулирования за счет учета фактических характеристик топлива и снижения инерционности элементов САУ и, как следствие, повышение надежности работы ГТД и расширение области его применения. 1 ил.

Формула изобретения RU 2 435 971 C2

Система топливопитания и регулирования ГТД, содержащая электронный регулятор (ЭР), подключенный к блоку датчиков (БД), последовательно соединенные плунжерный топливный насос переменной производительности (ПН) с сервоприводом, клапан останова (КО), распределительный клапан (РК), а также электрогидропреобразователь (ЭГП), отличающаяся тем, что дополнительно введен блок адаптации к характеристикам топлива, подключенный к БД и ЭР и выполненный в виде конструктивно-функционального модуля (КФМ) ЭР, а ЭР через ЭГП подключен к сервоприводу ПН.

Документы, цитированные в отчете о поиске Патент 2011 года RU2435971C2

СИСТЕМА ТОПЛИВОПИТАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2006
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
RU2322599C2
Система управления подачей топлива в газотурбинный двигатель 1989
  • Туголуков Николай Алексеевич
  • Барабаш Илларион Александрович
  • Выжимова Анна Ивановна
  • Новиков Георгий Александрович
  • Журун Ашон Васгенович
SU1815371A1
SU 1120777 A1, 10.08.2004
ТКАНЬ С ПЕРЕПЛЕТЕНИЕМ ШИЛОВА 2002
  • Шилов С.Б.
RU2228977C1
Клапан 1976
  • Хоменок Леонид Арсеньевич
  • Мутуль Валериан Вильгельмович
SU741240A2
US 3526384 A, 01.09.1970.

RU 2 435 971 C2

Авторы

Дудкин Юрий Петрович

Гладких Виктор Александрович

Фомин Геннадий Викторович

Даты

2011-12-10Публикация

2009-03-05Подача