СПЛАВ НА ОСНОВЕ ТИТАНА Российский патент 2012 года по МПК C22C14/00 

Описание патента на изобретение RU2439183C2

Изобретение относится к цветной металлургии, в частности к созданию сплавов на основе титана, обладающих повышенной устойчивостью против щелевой и питтинговой коррозии в агрессивных средах с температурой до 250°С, повышенным солесодержанием (3,5% NaCl) и рН 2,5-4,0.

Сплав предназначен для использования в водных теплоносителях теплопередающих элементов, теплообменных парогенерирующих аппаратов, различной арматуры, элементов оборудования химических производств и оффшорной техники.

Известны сплавы на основе титана: с добавками рутения - (Grade 26-27), добавками никеля и рутения - (Grade13-15); с алюминием, ванадием и рутением - (Grade 28-29), используемые в агрессивных средах [1, 2, 3].

Недостатками перечисленных сплавов являются: для одних - низкий уровень прочности (Grade 13, 14, 15 и Grade 26, 27); для других - пониженные значения пластичности и характеристик работоспособности сварных соединений из-за повышенного содержания ванадия (Grade 29).

Наиболее близким по технической сущности является сплав на основе титана (прототип), содержащий легирующие и примесные элементы, мас.%: алюминий 3,5-5,0; ванадий 1, 2-2,5; цирконий 0,30; кремний 0,12; железо 0,25; кислород 0,15; водород 0,006; азот 0,04; углерод 0,10; титан - остальное [4].

Недостатком этого сплава является повышенная чувствительность к питтинговой и щелевой коррозии, выявляемая в растворах хлоридов с температурой до 250°С и рН 2,5-4,0 под отложениями солей.

Техническим результатом предлагаемого изобретения является создание сплава, обладающего более высокой стойкостью против щелевой и питтинговой коррозии в агрессивных средах с температурой до 250°С, повышенным солесодержанием (3,5% NaCl) и рН 2,5-4,0, по сравнению с известным сплавом.

Технический результат достигается за счет того, в состав известного сплава, содержащего алюминий, ванадий; цирконий, кремний, железо, кислород; водород, азот; углерод и титан - остальное, дополнительно вводится рутений при следующем соотношении компонентов (мас.%):

Алюминий 3,5-5,0 Ванадий 1,2-2,5 Цирконий 0,01-0,30 Кремний 0,02-0,10 Железо 0,05-0,15 Кислород 0,03-0,12 Водород 0,001-0.006 Азот 0,01-0,03 Углерод 0,02-0,10 Рутений 0,05-0,14 Титан - остальное

Легирующие и примесные элементы (кислород, азот, водород, кремний, железо) находятся в таком соотношении, чтобы обеспечить высокую стойкость против щелевой и питтинговой коррозии в растворах при повышенных температурах (до 250°С) и с повышенным содержанием хлоридов (рН 2,5-4).

Повышение чистоты сплава (пониженное содержание примесных элементов) по сравнению с известным сплавом необходимо для уменьшения анодных участков на поверхности сплава и повышения его коррозионной стойкости.

Рутений в заявляемом сплаве является микролегирующей и катодно-модифицирующей добавкой, которая обеспечивает устойчивую пассивность сплава, за счет снижения перенапряжения реакции выделения водорода.

При катодном микролегировании рутением повышается катодная эффективность, смещающая электрохимический потенциал сплава в область устойчивой пассивности, что исключает опасность питтингообразования.

Алюминий в заявляемых пределах 3,5-5,0% интенсивно повышает прочностные характеристики сплава и обеспечивает хорошие технологические свойства при производстве полуфабрикатов. Повышение алюминия сверх пределов, заявленных в сплаве, снижает технологические свойства.

Ванадий в заявленных пределах повышает прочностные свойства сплава и снижает сегрегацию легирующих элементов, что понижает чувствительность сплава к перегреву.

Выплавляли слитки из заявляемого сплава и сплава прототипа (таблица 1).

Слитки ковали на плиты и прокатывали в листы толщиной 4,0 мм, из которых затем изготавливали образцы размером 4×35×35 мм для проведения коррозионных испытаний на щелевую и питтинговую коррозию. Проверку механических свойств выполняли по ГОСТ 1497 на цилиндрических образцах диаметром 5 мм.

С целью ускорения коррозионные испытания проводили в автоклаве в среде 20% раствора NaCl при температуре 250°С в течение 2000 часов. Испытания проводили в соответствии с [5]. Результаты испытаний приведены в таблице 2.

Оценка склонности к щелевой коррозии произведена по результатам исследования потери массы в размерности 10-3 г/(дм2·ч).

Оценка склонности к питтингу выполнена визуально при осмотре поверхности образцов с использованием оптического микроскопа при увеличении ×12. Выявляли питтинги диаметром не менее 0,1 мм.

На образце сплава прототипа обнаружены питтинговые поражения поверхности размером более 4,0 мм. На образце из заявляемого сплава никаких поражений поверхности обнаружено не было, поверхность образцов была блестящая. Представленные результаты показывают, что заявляемый сплав по стойкости против щелевой и питтинговой коррозии превосходит аналогичные характеристики известного сплава. Это позволяет увеличить ресурс различных элементов оборудования при эксплуатации в водных растворах с повышенным содержанием хлоридов при повышенной температуре до 250°С и рН 2,5 в 6-8 раз.

Источники информации

1. Стандарт на прокат и заготовки из титана и титановых сплавов ASTM В 265.

2. Стандарт на полосы, листы и плиты из титана и титановых сплавов ASTM В 348.

3. Стандарт на бесшовные трубы из титана и титановых сплавов для конденсаторов и теплообменников ASTM В 338.

4. Титан и титановые сплавы деформируемые. Марки. ГОСТ 19807.

5. Методы ускоренных испытаний на стойкость к питтинговой коррозии

ГОСТ 9.912-89 (СТ СЭВ 64461-88).

Похожие патенты RU2439183C2

название год авторы номер документа
СПЛАВ НА ОСНОВЕ ТИТАНА 2010
  • Кудрявцев Анатолий Сергеевич
  • Чудаков Евгений Васильевич
  • Щербинин Владимир Федорович
  • Молчанова Нэлли Федоровна
  • Малинкина Юлия Юрьевна
RU2426808C1
СПЛАВ НА ОСНОВЕ ТИТАНА 2012
  • Леонов Валерий Петрович
  • Кудрявцев Анатолий Сергеевич
  • Чудаков Евгений Васильевич
  • Иванова Людмила Александровна
  • Щербинин Владимир Федорович
  • Кулик Вера Петровна
  • Молчанова Нэлли Федоровна
RU2502819C1
Сплав на основе титана 2022
  • Леонов Валерий Петрович
  • Чудаков Евгений Васильевич
  • Иксанов Максим Владимирович
  • Иванникова Наталья Валерьевна
  • Молчанова Нэлли Федоровна
  • Малинкина Юлия Юрьевна
RU2801581C1
Литейный сплав на основе титана 2018
  • Леонов Валерий Петрович
  • Чудаков Евгений Васильевич
  • Третьякова Наталья Валерьевна
  • Васильева Евгения Андреевна
  • Молчанова Нэлли Фёдоровна
  • Иксанов Максим Владимирович
RU2690073C1
Сплав на основе титана 2016
  • Леонов Валерий Петрович
  • Ртищева Любовь Павловна
  • Молчанова Нэлли Федоровна
  • Малинкина Юлия Юрьевна
  • Лукьянова Татьяна Александровна
  • Мартынов Кирилл Геннадьевич
RU2614229C1
СПЛАВ НА ОСНОВЕ ТИТАНА 2013
  • Чудаков Евгений Васильевич
  • Кудрявцев Анатолий Сергеевич
  • Иванова Людмила Александровна
  • Молчанова Нэлли Федоровна
RU2506336C1
СПЛАВ НА ОСНОВЕ ТИТАНА 2015
  • Леонов Валерий Петрович
  • Кудрявцев Анатолий Сергеевич
  • Чудаков Евгений Васильевич
  • Кулик Вера Петровна
  • Молчанова Нелли Федоровна
  • Малинкина Юлия Юрьевна
RU2582171C1
СПЛАВ НА ОСНОВЕ ТИТАНА (ВАРИАНТЫ) И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2015
  • Каблов Евгений Николаевич
  • Ночовная Надежда Алексеевна
  • Ширяев Андрей Александрович
  • Алексеев Евгений Борисович
  • Новак Анна Викторовна
RU2606677C1
АУСТЕНИТНО-ФЕРРИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2700440C1
СПЛАВ НА ОСНОВЕ ТИТАНА 2018
  • Ковальчук Михаил Валентинович
  • Орыщенко Алексей Сергеевич
  • Леонов Валерий Петрович
  • Кудрявцев Анатолий Сергеевич
  • Чудаков Евгений Васильевич
  • Кулик Вера Петровна
  • Третьякова Наталья Валерьевна
  • Ледер Михаил Оттович
RU2690257C1

Реферат патента 2012 года СПЛАВ НА ОСНОВЕ ТИТАНА

Изобретение относится к металлургии, в частности к сплавам на основе титана, и может быть использовано в водных теплоносителях теплопередающих элементов, теплообменных парогенерирующих аппаратов, элементов оборудования химических производств. Заявлен сплав на основе титана, содержащий, мас.%: алюминий 3,5-5,0, ванадий 1,2-2,5, цирконий 0,01-0,30, кремний 0,02-0,10, железо 0,05-0,15, кислород 0,03-0,12, водород 0,001-0,006, азот 0,01-0,03, углерод 0,02-0,10, рутений 0,05-0,14, титан - остальное. Сплав обладает повышенной устойчивостью против щелевой и питтинговой коррозии в агрессивных средах с температурой до 250°С, повышенным солесодержанием 3,5% NaCl и рН 2,5-4,0. Повышение стойкости против щелевой и питтинговой коррозии заявляемого сплава позволит увеличить ресурс элементов оборудования, эксплуатируемого в агрессивных средах. 2 табл.

Формула изобретения RU 2 439 183 C2

Сплав на основе титана, содержащий алюминий, ванадий, цирконий, кремний, железо, кислород, водород, азот, углерод и титан, отличающийся тем, что он дополнительно содержит рутений при следующем соотношении компонентов, мас.%:
Алюминий 3,5-5,0 Ванадий 1,2-2,5 Цирконий 0,01-0,30 Кремний 0,02-0,10 Железо 0,05-0,15 Кислород 0,03-0,12 Водород 0,001-0,006 Азот 0,01-0,03 Углерод 0,02-0,10 Рутений 0,05-0,14 Титан - остальное

Документы, цитированные в отчете о поиске Патент 2012 года RU2439183C2

СПЛАВ НА ОСНОВЕ ТИТАНА 2001
  • Тетюхин В.В.
  • Смирнов В.Г.
  • Левин И.В.
RU2203974C2
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
JP 2001329324 А, 27.11.2001
Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1
ТИТАНОВЫЙ СПЛАВ 1992
  • Соколов В.С.
  • Гончаренко Б.А.
  • Макеева Г.И.
  • Лапин П.Г.
  • Трубин А.Н.
  • Строжков А.Н.
RU2039111C1

RU 2 439 183 C2

Авторы

Леонов Валерий Петрович

Кудрявцев Анатолий Сергеевич

Чудаков Евгений Васильевич

Щербинин Владимир Федорович

Молчанова Нэлли Федоровна

Козлова Ирина Рудольфовна

Даты

2012-01-10Публикация

2010-04-07Подача