СПОСОБ ОПРЕДЕЛЕНИЯ ГАЗОЧУВСТВИТЕЛЬНЫХ ХАРАКТЕРИСТИК И ЭЛЕКТРОФИЗИЧЕСКИХ СВОЙСТВ ГАЗОЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА В ЧАСТОТНОЙ ОБЛАСТИ Российский патент 2012 года по МПК G01N27/14 

Описание патента на изобретение RU2439547C1

Предлагаемое изобретение относится к области измерения электрических характеристик наноразмерных газочувствительных материалов, в частности к измерению комплексной проводимости газочувствительных материалов, и может быть использовано в производстве сенсоров газа, основанных на полупроводниковых неорганических материалах сложного состава, а также для синтеза структур пленки эквивалентной схемой.

Известен способ определения концентрации водорода в присутствии газообразных примесей (патент РФ №2371709, МПК G01N27/14 от 10.04.2008г.). Сигнал на выходе полупроводникового газочувствительного элемента измеряют непрерывно, циклически нагревая его до температуры Т1 и охлаждая его до температуры Т2, определяют производную проводимости чувствительного слоя газочувствительного элемента по времени в течение интервала времени между окончанием нагрева до температуры T1 и окончанием охлаждения до температуры Т2, определяют величину проводимости, являющуюся функцией концентрации газа, определяют наличие и количество локальных минимумов зависимости проводимости чувствительного слоя от времени в интервале между окончанием нагрева и окончанием охлаждения, при этом, если таких локальных минимумов было два, электрический сигнал на выходе полупроводникового чувствительного элемента измеряют в момент времени между первым и последним локальными минимумами, в котором абсолютная величина производной проводимости по времени достигает минимума, если локальный минимум был один, то электрический сигнал на выходе полупроводникового чувствительного элемента измеряют в момент времени между окончанием нагрева и последним локальным минимумом, в котором абсолютная величина производной проводимости по времени достигает минимума, а по значению измеренного электрического сигнала судят о величине проводимости чувствительного слоя полупроводникового газочувствительного элемента, по которой определяют концентрацию газа. Признаки аналога, совпадающие с существенными признаками способа:

а) измеряют электрический сигнал на выходе полупроводникового газочувствительного элемента с чувствительным слоем из оксида металла при нагревании его до заданной температуры;

б) по значению сигнала с выхода полупроводникового сенсора определяют величину проводимости чувствительного слоя газочувствительного элемента;

в) измерения проводимости чувствительного слоя элемента производится непрерывно.

Причинами, препятствующими достижению технического результата, являются: определяется производная проводимости чувствительного слоя газочувствительного элемента по времени в течение интервала между окончанием нагрева Т1 и охлаждением Т2; определяют количество локальных минимумов зависимости проводимости чувствительного слоя газочувствительного элемента от времени.

Известен способ распознавания газообразных веществ (патент РФ №2209425, МПК G01N 27/12 от 27.07.2003г.). Периодически нагревают в некоторой области температур Т0 и Тmax металлооксидный каталитический термохимический газочувствительный элемент и измеряют электропроводность газочувствительного элемента при исходной температуре Т0 до нагрева, после разогрева в области некоторой высокой температуры Тmax и после охлаждения до исходной температуры Т0, измерения электропроводности проводят на протяжении всего цикла нагрева и охлаждения в промежутках температур: от исходной ТО до максимальной Тmax и от максимальной Тmax до исходной Т0 соответственно, по меньшей мере, при двух отличных друг от друга скоростях нагрева в процессе синхронизованного с циклами нагрева фотовозбуждения поверхности газочувствительного элемента и без него при охлаждении, посредством параллельного измерения, на протяжении всего цикла нагрев-охлаждение, температуры Т и мощности Джоулевых потерь нагревателя газочувствительного элемента Р, по которым находят совокупность множеств температур {Т}={Тр}{ТТ}{Тс} особых точек (нулей функций), по меньшей мере, первых и вторых производных по времени значений мощности Джоулевых потерь нагревателя Р - {Тр}, температуры металлооксидного слоя газочувствительного элемента Т-{Тт} и его электропроводности С (или сопротивления R) {Тс}, и по найденным температурам однотипных i-ых особых точек {Ti с} - максимумов и точек перегиба, на каждой из двух температурных зависимостей проводимости, полученных при разных скоростях нагрева, определяют температурный сдвиг для каждой i-й пары особых точек в области нагрева и по нему рассчитывают энергии активации {Еа} и сравнивают {Еа} вместе с множеством особых точек {Т} путем сопоставления с соответствующими энергиями активации {Еа} и температурами особых точек {Т} эталонных газов или смесей газов, полученных на этом же или аналогичном ему устройстве в сходных технических условиях, после чего по числу совпадений делается вывод о вероятностном присутствии в исследуемой газовой смеси компонентов, входящих в состав эталонных смесей.

Признаки аналога, совпадающие с существенными признаками способа:

а) измерение электропроводности газочувствительного элемента при исходной температуре;

б) измерение электропроводности проводят на протяжении всего цикла нагрева.

Причинами, препятствующими достижению технического результата, являются: необходимость изменения температуры газочувствительного элемента от максимальной до исходной и синхронизированного с циклом нагрева фотовозбуждения поверхности газочувствительного элемента.

Наиболее близким по технической сущности к заявляемому способу является способ определения концентрации газов (патент РФ №2065159, МПК G01N 27/12 от 10.08.1996г). В газовой среде размещают газочувствительный элемент, нагревают газочувствительный элемент и измеряют его электропроводность, дополнительно в этой же газовой среде размещают каталитическое тело, активное к измеряемому газу, нагревают его до температуры, при которой происходит электронное возбуждение молекул газа, и измеряют изменение электропроводности газочувствительного элемента.

Признаки прототипа, совпадающие с существенными признаками способа:

а) в газовой среде размещают газочувствительный элемент;

б) газочувствительный элемент нагревают и измеряют его электропроводность;

в) измеряют изменение электропроводности газочувствительного элемента в зависимости от времени.

Причиной, препятствующей достижению технического результата, являются дополнительные затраты на размещение каталитического тела.

Задача предлагаемого изобретения - одновременное определение газочувствительных характеристик и электрофизических свойств газочувствительного элемента.

Технический результат достигается тем, что в газочувствительном элементе, измеряют активное и емкостное сопротивления в зависимости от частоты, из чего определяют модуль и аргумент комплексного сопротивления эквивалентной схемной модели газочувствительного элемента, затем определяют коэффициенты передаточной функции газочувствительного элемента и синтезируют электрическую схему модели газочувствительного элемента с определением значений сопротивлений и емкостей элементов схемной модели исследуемого газочувствительного элемента.

Для достижения технического результата в способе одновременного определения газочувствительных характеристик и электрофизических свойств газочувствительного элемента в частотной области, включающем размещение в газовой среде газочувствительного элемента, нагревание газочувствительного элемента и измерение его электропроводности, измерения изменения электропроводности газочувствительного элемента в зависимости от времени, причем в газочувствительном элементе измеряют активное и емкостное сопротивления в зависимости от частоты, из чего определяют модуль и аргумент комплексного сопротивления эквивалентной схемной модели газочувствительного элемента, затем определяют коэффициенты передаточной функции газочувствительного элемента и синтезируют электрическую схему модели газочувствительного элемента с определением значений сопротивлений и емкостей элементов схемной модели исследуемого газочувствительного элемента.

На чертеже изображена эквивалентная электрическая схема образца газочувствительного материала, где R0 характеризует объемное сопротивление образца с пленкой; С0 соответствует емкости двойного слоя на контактах электрод-образец; R1 характеризует объемное сопротивление отдельных зерен поликристаллической пленки; С1 соответствует емкости отдельных зерен поликристаллической пленки; R2 характеризует сопротивление зерен поликристаллической пленки; С2 соответствует емкости границ зерен поликристаллической пленки; цепочка Rw и Cw - характеризует диффузионный импеданс Варбурга и является эквивалентной схемой для электрода с емкостью двойного слоя.

Рассмотрим возможность осуществления данного способа на конкретном примере. В качестве газочувствительного элемента используется пленка полупроводникового материала.

Исследуемый газочувствительный элемент помещают в камеру для испытаний, в которую может быть подан анализируемый газ. Измерения проводят в температурном диапазоне 20-210°С на частотах 0-105 Гц. Сигнал с исследуемого газочувствительного элемента посредствам операционного усилителя преобразуют в напряжение, которое обрабатывается через аналого-цифровой преобразователь персональным компьютером. Пользователь, в зависимости от необходимых параметров проводимого эксперимента, устанавливает параметры режима работы газочувствительного элемента. Сигналы, вырабатываемые компьютером, преобразуются при помощи цифроаналогового преобразователя в аналоговый сигнал и управляют источником питания, который питает нагревательные элементы газочувствительного сенсора.

Измерения параметров R и С проводятся в зависимости от частоты, R(f) С(f), значения которых отсчитываются непосредственно цифровыми измерительными приборами. Из чего определяют модуль комплексного сопротивления Z(ω) измеряемого образца и его фазу φ(ω) в соответствии с обобщенным законом Ома:

Z(ω)=Z·cos(ϕ)-i·sin(ϕ)=Z'-i·Z'',

далее определяют реактивное сопротивление емкости Хс и модуль комплексное сопротивление Zk:

затем определяем аргумент комплексного сопротивления vk и вычислим комплексное сопротивление bk:

В показательном виде комплексное сопротивление газочувствительного элемента равно:

Для оценки параметров механизма химической реакции были измерены величины емкости и сопротивления на частотах 102-105 Гц. По результатам были рассчитаны реактивные составляющие сопротивления (Хс) и импеданс (Z) по следующим расчетным формулам:

где Xc - реактивная составляющая сопротивления; f - частота; С - емкость;

где Z - импеданс; R - активная составляющая сопротивления.

Передаточная функция эквивалентной схемы исследуемого газочувствительного элемента имеет вид

Для определения коэффициента полинома S(jw) составляют систему расчётных уравнений. Строят амплитудно- и фазочастотную характеристики цепи, на основании расчёта полного импеданса строится эквивалентная электрическая схема образца, пример которой приведен на чертеже. Проведенные измерения позволили синтезировать схемную модель газочувствительного элемента, представленную на чертеже. Синтезированная схемная модель газочувствительного элемента содержит последовательные и параллельные R, С - цепочки. Отличительной особенностью данного способа является возможность учета различных воздействующих факторов: температуры нагрева, влияния адсорбирующихся молекул газа, а также электрофизические характеристики газочувствительного элемента.

Одно из преимуществ заявляемого способа перед известными способами заключается в том, что измерения проводятся в широком интервале частот, чтобы выделить ту область, где измеряются величины, соответствующие объемному истинному сопротивлению образца. На исследуемый образец подается возмущающий синусоидальный сигнал малой амплитуды и изучается вызванный им сигнал-отклик на выходе:

где ω=2·π·f - круговая частота, θ - фазовый сдвиг.

Похожие патенты RU2439547C1

название год авторы номер документа
ГАЗОЧУВСТВИТЕЛЬНЫЙ ДЕТЕКТОР 2019
  • Аниськов Роман Витальевич
  • Гордеев Андрей Анатольевич
  • Никонов Вадим Сергеевич
  • Эль-Салим Суад Зухер
  • Захаров Николай Николаевич
RU2718133C1
СПОСОБ АНАЛИЗА СОСТАВА ГАЗОВОЙ СРЕДЫ 2015
  • Сысоев Виктор Владимирович
  • Киселев Илья Викторович Илья Викторович
  • Варежников Алексей Сергеевич
  • Федоров Федор Сергеевич
  • Мусатов Вячеслав Юрьевич
  • Папшев Сергей Владимирович
  • Бурмистров Игорь Николаевич
  • Гороховский Александр Владиленович
RU2586446C1
Способ определения концентрации газа 2020
  • Евдокимов Юрий Кириллович
  • Фадеева Людмила Юрьевна
  • Денисов Евгений Сергеевич
RU2739719C1
СПОСОБ РАСПОЗНАВАНИЯ ГАЗООБРАЗНЫХ ВЕЩЕСТВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2002
  • Антоненко В.И.
RU2209425C1
Газочувствительный элемент 1982
  • Бакаев Иван Иванович
  • Бондаренко Александр Григорьевич
  • Соколов Юрий Арсеньевич
  • Троицкая Жанна Борисовна
SU1141325A1
Способ изготовления газочувствительного элемента 1990
  • Арешкин Алексей Андреевич
  • Павлова Эмилия Игоревна
  • Афанасьев Анатолий Алексеевич
  • Гутман Эдуард Ефимович
SU1761814A1
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО ГАЗОЧУВСТВИТЕЛЬНОГО МАТЕРИАЛА 2013
  • Варфоломеев Андрей Евгеньевич
RU2530442C1
ГАЗОЧУВСТВИТЕЛЬНЫЙ СЛОЙ ДЛЯ ОПРЕДЕЛЕНИЯ ФОРМАЛЬДЕГИДА В ВОЗДУХЕ, СЕНСОР С ГАЗОЧУВСТВИТЕЛЬНЫМ СЛОЕМ И ДЕТЕКТОР ДЛЯ ОПРЕДЕЛЕНИЯ ФОРМАЛЬДЕГИДА 2019
  • Румянцева Марина Николаевна
  • Гаськов Александр Михайлович
  • Осипова Алеся Андреевна
  • Насриддинов Абулкосим Фирузджонович
RU2723161C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПРИМЕСИ ГАЗА В ВОЗДУХЕ 2004
  • Симаков Вячеслав Владимирович
  • Кисин Владимир Владимирович
  • Якушева Ольга Владимировна
  • Гребенников Александр Иванович
RU2279066C1
Полупроводниковый газочувствительный датчик 2020
  • Демин Иван Евгеньевич
  • Козлов Александр Геннадьевич
RU2759908C1

Иллюстрации к изобретению RU 2 439 547 C1

Реферат патента 2012 года СПОСОБ ОПРЕДЕЛЕНИЯ ГАЗОЧУВСТВИТЕЛЬНЫХ ХАРАКТЕРИСТИК И ЭЛЕКТРОФИЗИЧЕСКИХ СВОЙСТВ ГАЗОЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА В ЧАСТОТНОЙ ОБЛАСТИ

Изобретение относится к области измерения электрических характеристик наноразмерных газочувствительных материалов, в частности к измерению комплексной проводимости газочувствительных материалов, и может быть использовано в производстве сенсоров газа, основанных на полупроводниковых неорганических материалах сложного состава, а также для синтеза структур пленки эквивалентной схемой. Способ согласно изобретению заключается в том, что в газочувствительном элементе измеряют активное и емкостное сопротивления в зависимости от частоты, из чего определяют модуль и аргумент комплексного сопротивления эквивалентной схемной модели газочувствительного элемента, затем определяют коэффициенты передаточной функции газочувствительного элемента и синтезируют электрическую схему модели газочувствительного элемента с определением значений сопротивлений и емкостей элементов схемной модели исследуемого газочувствительного элемента. Преимущество изобретения заключается в том, что измерения проводятся в широком интервале частот, что обеспечивает возможность выделить ту область, где измеряются величины, соответствующие объемному истинному сопротивлению образца. 1 ил.

Формула изобретения RU 2 439 547 C1

Способ одновременного определения газочувствительных характеристик и электрофизических свойств газочувствительного элемента в частотной области, включающий размещение в газовой среде газочувствительного элемента, нагревание газочувствительного элемента и измерение его электропроводности, измерения изменения электропроводности газочувствительного элемента в зависимости от времени, отличающийся тем, что в газочувствительном элементе измеряют активное и емкостное сопротивления в зависимости от частоты, из чего определяют модуль и аргумент комплексного сопротивления эквивалентной схемной модели газочувствительного элемента, затем определяют коэффициенты передаточной функции газочувствительного элемента и синтезируют электрическую схему модели газочувствительного элемента с определением значений сопротивлений и емкостей элементов схемной модели исследуемого газочувствительного элемента.

Документы, цитированные в отчете о поиске Патент 2012 года RU2439547C1

СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ГАЗА 1994
  • Комаровский З.П.
  • Тхир С.Г.
RU2065159C1
СПОСОБ АНАЛИЗА СОСТАВА ГАЗОВЫХ СМЕСЕЙ И ГАЗОАНАЛИЗАТОР ДЛЯ ЕГО РЕАЛИЗАЦИИ 2000
  • Сомов С.И.
RU2171468C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ВОДОРОДА В ПРИСУТСТВИИ ГАЗООБРАЗНЫХ ПРИМЕСЕЙ 2008
  • Васильев Алексей Андреевич
  • Соколов Андрей Владимирович
  • Самотаев Николай Николаевич
RU2371709C1
DE 69724486 T2, 01.04.2004.

RU 2 439 547 C1

Авторы

Перов Виктор Владимирович

Полуянович Николай Константинович

Дубяго Марина Николаевна

Даты

2012-01-10Публикация

2010-07-09Подача