СПОСОБ ПРОИЗВОДСТВА ВЫСОКОКРЕМНИСТОЙ ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ Российский патент 2012 года по МПК C21D8/12 C21D1/26 

Описание патента на изобретение RU2442832C1

Изобретение относится к металлургии, конкретно к производству холоднокатаной изотропной электротехнической стали четвертой группы легирования.

Известны способы производства холоднокатаной изотропной электротехнической стали (ЭИС), включающие выплавку кремнистой стали, разливку, горячую прокатку полос с регламентированными температурами конца прокатки, ускоренное охлаждение водой, холодную прокатку полос и их скоростной рекристаллизационный или совмещенный обезуглероживающе-рекристаллизационный отжиг в проходной печи [1, 2].

Недостатки известных способов состоят в том, что холоднокатаная ИЭС имеет низкие магнитные свойства.

Наиболее близким аналогом к предлагаемому изобретению является способ производства изотропной электротехнической стали, включающий изготовление слябов, их нагрев, горячую прокатку, холодную прокатку, совмещенный обезуглероживающе-рекристаллизационный отжиг или рекристаллизационный отжиг при температуре не ниже 900°С [3].

Недостаток данного способа заключается в том, что при производстве высококремнистой ИЭС с содержанием кремния, равным 2,8-3,8%, в холоднокатаных полосах после обезуглероживающе-рекристаллизационного или рекристаллизационного отжига формируются неблагоприятные анизотропные микроструктура и кристаллографическая текстура. Это приводит к ухудшению их магнитных свойств.

Техническая задача, решаемая изобретением, состоит в повышении магнитных свойств высококремнистой изотропной электротехнической стали.

Для решения поставленной технической задачи в известном способе производства высококремнистой изотропной электротехнической стали с содержанием кремния 2,8-3,8%, включающем изготовление слябов, их нагрев, горячую прокатку, холодную прокатку, совмещенный обезуглероживающе-рекристаллизационный отжиг или рекристаллизационный отжиг при температуре не ниже 900°С, согласно изобретению температуру конца горячей прокатки поддерживают в интервале 780-860°С, после чего полосу охлаждают водой до температуры 580-630°С, нагрев холоднокатаной полосы при отжиге осуществляют вначале со скоростью не менее 500°С/мин до температуры 480-520°С, затем со скоростью не более 400°С/мин до температуры не выше 800°С и завершают с произвольной скоростью.

Сущность предложенного изобретения состоит в следующем. При горячей прокатке высококремнистой ИЭС закладываются наследуемые структурные и текстурные параметры, которые существенно влияют на магнитные свойства готовой металлопродукции. При температуре конца горячей прокатки полос Ткп=780-860°С и последующем их ускоренном охлаждении водой до температуры Тсм=580-630°С формируется углеродсодержащая фаза пластинчатого перлита с равноосными рекристаллизованными зернами 6 номера у поверхности полосы и зернами 5 номера в середине ее сечения.

Сформированная при горячей прокатке микроструктура и текстура высококремнистой стали оказывает наследственное влияние на процесс структуро- и текстурообразования в процессе скоростного совмещенного обезуглероживающе-рекристаллизационного отжига или рекристаллизационного отжига холоднокатаных полос.

Исследования показали, что механизм зародышеобразования при первичной рекристаллизации в процессе отжига высококремнистой ИЭС в большой степени зависит от скоростей нагрева в различных температурных интервалах при отжиге.

При скоростях нагрева не менее 500°С/мин до температуры 480-520°С достигается подавление процесса полигонизации зародышей новых зерен микроструктуры. Повышенное содержание кремния затрудняет протекание диффузионных процессов. Это стимулирует интенсивное образования и роста зародышей новых зерен из деформированной при холодной прокатке металлической матрицы.

Нагрев со скоростью не более 400°С/мин до температуры не выше 800°С препятствует развитию разнозернистости и увеличению в текстуре центральных слоев полосы доли неблагоприятного текстурного компонента {222}. В дальнейшем скорость нагрева до температуры рекристаллизационного отжига (не ниже 900°С) на конечные магнитные и механические свойства холоднокатаных полос влияния не оказывает. Поэтому нагрев можно проводить с максимально возможной (исходя из конструктивных параметров проходной печи) скоростью.

Экспериментально установлено, что при снижении содержания кремния в ИЭС менее 2,8% по массе имеет место увеличение показателя удельных магнитных потерь. Увеличение содержания кремния более 3,8% по массе приводит к формированию анизотропных магнитных свойств, что недопустимо.

При температуре конца горячей прокатки ниже 780°С зерна микроструктуры металлической матрицы неравноосны, что ухудшает изотропность магнитных свойств (способствует росту разности магнитной индукции ΔВ2500, измеренной в продольном и поперечном направлениях). Увеличение температуры конца прокатки выше 860°С приводит к формированию неоднородной микроструктуры по толщине полос, ухудшению магнитных свойств холоднокатаной ИЭС.

Уменьшение температуры окончания охлаждения горячекатаных полос водой ниже 580°С приводит к формированию неравномерности зеренной структуры по сечению, ухудшению магнитных свойств. Увеличение этой температуры более 630°С увеличивает обезуглероживание поверхности полос, ведет к образованию крупных ферритных зерен. Это также ухудшает магнитные свойства ИЭС.

Рекристаллизационный отжиг холоднокатаных полос из стали с содержанием кремния 2,8-3,8% в проходной печи при температуре ниже 900°С не обеспечивает протекания полного процесса рекристаллизации, снятия анизотропии свойств и подавления текстуры деформации, сформированной при холодной прокатке. Это отрицательно сказывается на магнитных свойствах ИЭС.

При скорости нагрева менее 500°С/мин, проводимой до температуры ниже 480°С, в стали с содержанием кремния 2,8-3,8% интенсифицируется нежелательный процесс полигонизации зерен микроструктуры, зерна приобретают неравноосную форму. В случае завершения этого нагрева при температуре выше 520°С/мин в текстуре возрастает количество неблагоприятной компоненты {222}. Все это ухудшает магнитные свойства ИЭС.

При скорости повторного нагрева более 400°С/мин или температуре окончания этого нагрева выше 800°С зерна рекристаллизованной микроструктуры стали с содержанием кремния 2,8-3,8% имеют большой разброс по размерам: от 5 до 9 номеров, уменьшается содержание благоприятной кристаллографической ориентировки {200}, ухудшается изотропность и снижается уровень магнитных свойств ИЭС.

Примеры реализации способа

В кислородном конвертере производят выплавку ИЭС 4-й группы легирования следующего химического состава, мас.%:

С Si Mn Al P S Cr Ni Cu N 0,04 3,3 0,3 0,40 0,012 0,003 0,08 0,10 0,15 0,006

Выплавленную сталь подвергают непрерывной разливке в слябы сечением 250×1200 мм, длиной 8 м, которые отжигают при температуре 900°С.

Отожженные слябы нагревают в методической печи непрерывного широкополосного стана 2000 до температуры аустенитизации 1190°С и подвергают горячей прокатке в полосы толщиной 2,5 мм. Температуру конца горячей прокатки поддерживают равной Ткп=820°С. После выхода из последней клети полосы ускоренно охлаждают водой на отводящем рольганге до температуры Тсм=600°С и сматывают в рулоны.

Горячекатаные полосы подвергают солянокислотному травлению, после чего прокатывают на непрерывном четырехклетевом стане кварто холодной прокатки в полосы толщиной 0,50 мм.

Холоднокатаные полосы подвергают скоростному обезуглероживающе-рекристаллизационному (или рекристаллизационному) отжигу в агрегате непрерывного отжига (АНО).

При отжиге транспортируемую через АНО полосу нагревают вначале со скоростью V1=550°С/мин до температуры T1=500°С. Затем полосу подвергают нагреву со скоростью V2=380°С/мин до температуры Т2=790°С. Завершающий нагрев проводят со скоростью 900°С/мин до температуры отжига Тотж=1050°С.

Отожженную полосу охлаждают в АНО струями азота, после чего на нее наносят электроизоляционное покрытие и производят измерение механических и магнитных свойств.

Варианты реализации предложенного способа производства ИЭС и показатели их эффективности представлены в таблице.

Из данных в таблице следует, что при реализации предложенного способа (варианты №2-4) обеспечивается повышение магнитных свойств высококремнистой изотропной электротехнической стали:

- минимальна магнитная индукция B2500=1,51-1,54 Тл;

- минимальна анизотропия магнитных свойств ΔВ2500=0,03-0,04 Тл;

- минимальны удельные магнитные потери P1,5/50=2,50-2,73 Вт/кг.

При запредельных значениях заявленных параметров (варианты №1 и №5) магнитные свойства ИЭС снижаются. Также более низкие магнитные свойства достигаются в случае реализации известного способа получения ИЭС [3]: В2500=1,57 Тл; ΔВ2500=0,07 Тл; Р1,5/50=2,96 Вт/кг.

Таблица Режимы производства холоднокатаной ИЭС и показатели магнитных свойств № п/п Si, % Ткп, °С Тсм, °С V1, °С/мин Т1, °С V2, °С/мин Т2, °С Тотж, °С В2500, Тл ΔВ2500, Тл Р1,5/50, Вт/кг 1 2,7 770 570 490 470 410 770 890 1,58 0,06 3,76 2 2,8 780 580 500 480 390 780 900 1,54 0,04 2,65 3 3,3 820 600 550 500 380 790 1050 1,51 0,03 2,50 4 3,8 860 630 700 520 370 800 1030 1,53 0,04 2,73 5 3,9 870 640 720 530 360 820 1020 1,56 0,05 2,90

Технико-экономические преимущества предложенного способа состоят в том, что он обеспечивает формирование в высококремнистой ИЭС преобладание текстурной составляющей кубической и ребровой ориентации, полоса имеет минимальную полюсную плотность октаэдрического компонента. Концентрация благоприятного текстурного компонента {200} максимальна. Зерна микроструктуры равноосны и соответствуют 6-7 номеру по всему объему полосы. В результате этого достигается одновременно как высокая изотропность магнитных свойств, так и минимальные удельные магнитные потери.

В качестве базового объекта при определении технико-экономической эффективности предложенного способа принят ближайший аналог [3]. Использование предложенного способа обеспечивает повышение рентабельности производства высококремнистой изотропной электротехнической стали на 10-15%.

Источники информации

1. Патент РФ №2147616, МПК C21D 8/12, 2000 г.;

2. Патент РФ №2149194, МПК C21D 8/12, 2000 г.;

3. Патент РФ №2186861, МПК C21D 8/12, 2002 г.

Похожие патенты RU2442832C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 2010
  • Трайно Александр Иванович
  • Слюсарь Нелли Юрьевна
  • Чеглов Александр Егорович
  • Кондратков Дмитрий Александрович
  • Дёгтев Сергей Сергеевич
  • Мариев Сергей Александрович
RU2427654C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 2000
  • Чеглов А.Е.
  • Миндлин Б.И.
  • Гвоздев А.Г.
  • Логунов В.В.
  • Парахин В.И.
RU2186861C2
СПОСОБ ПРОИЗВОДСТВА ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 2004
  • Кондратков Дмитрий Александрович
  • Чеглов Александр Егорович
  • Слюсарь Нелли Юрьевна
  • Заверюха Анатолий Александрович
RU2270261C1
СПОСОБ ПРОИЗВОДСТВА ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 1998
  • Настич В.П.
  • Франценюк Л.И.
  • Чеглов А.Е.
  • Миндлин Б.И.
  • Гвоздев А.Г.
  • Логунов В.В.
  • Околелов О.П.
RU2149194C1
СПОСОБ ПРОИЗВОДСТВА ПОЛОС ЭЛЕКТРОТЕХНИЧЕСКОЙ ИЗОТРОПНОЙ СТАЛИ С УЛУЧШЕННЫМИ СВОЙСТВАМИ 2009
  • Божков Александр Иванович
  • Чеглов Александр Егорович
  • Дёгтев Сергей Сергеевич
  • Кондратков Дмитрий Александрович
  • Шопин Иван Иванович
  • Олейник Алексей Николаевич
RU2413007C1
СПОСОБ ПРОИЗВОДСТВА ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ С ФОСФОРОМ 2004
  • Кондратков Д.А.
  • Чеглов А.Е.
  • Заверюха А.А.
RU2262540C1
СПОСОБ ПРОИЗВОДСТВА АНИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ С ВЫСОКИМИ МАГНИТНЫМИ СВОЙСТВАМИ 2009
  • Ларин Юрий Иванович
  • Поляков Михаил Юрьевич
  • Цейтлин Генрих Аврамович
RU2407809C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ПОЛУОБРАБОТАННОЙ ЛЕГИРОВАННОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 2013
  • Мишнев Петр Александрович
  • Дятлов Илья Алексеевич
  • Антонов Павел Валерьевич
  • Черняев Михаил Геннадьевич
  • Курсаев Александр Михайлович
  • Драницын Андрей Александрович
  • Корытин Павел Владимирович
RU2529326C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 1994
  • Франценюк И.В.
  • Франценюк Л.И.
  • Гофман Ю.И.
  • Рябов В.В.
  • Настич В.П.
  • Миндлин Б.И.
  • Шаршаков И.М.
  • Гвоздев А.Г.
  • Логунов В.В.
  • Заверюха А.А.
  • Хватова Н.Ф.
  • Карманов В.П.
RU2085598C1
СПОСОБ ПРОИЗВОДСТВА ПОЛОС ЭЛЕКТРОТЕХНИЧЕСКОЙ ИЗОТРОПНОЙ СТАЛИ С УЛУЧШЕННЫМИ СВОЙСТВАМИ 2009
  • Божков Александр Иванович
  • Чеглов Александр Егорович
  • Дёгтев Сергей Сергеевич
  • Кондратков Дмитрий Александрович
  • Шопин Иван Иванович
  • Ткачик Евгений Витальевич
RU2413008C1

Реферат патента 2012 года СПОСОБ ПРОИЗВОДСТВА ВЫСОКОКРЕМНИСТОЙ ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ

Изобретение относится к металлургии, конкретно к производству холоднокатаной изотропной электротехнической стали четвертой группы легирования. Для повышения магнитных свойств слябы из стали с содержанием кремния 2,8-3,8% нагревают, подвергают горячей прокатке, холодной прокатке, проводят совмещенный обезуглероживающе-рекристаллизационный отжиг или рекристаллизационный отжиг при температуре не ниже 900°С, при этом температуру конца горячей прокатки поддерживают в интервале 780-860°С, после чего полосу охлаждают водой до температуры 580-630°С, причем нагрев холоднокатаной полосы при отжиге сначала ведут до температуры 480-520°С со скоростью не менее 500°С/мин, затем до температуры не выше 800°С со скоростью не более 400°С/мин, а завершающий нагрев осуществляют с произвольной скоростью. 1 табл.

Формула изобретения RU 2 442 832 C1

Способ производства высококремнистой изотропной электротехнической стали с содержанием кремния 2,8-3,8%, включающий изготовление слябов, их нагрев, горячую прокатку, холодную прокатку, совмещенный обезуглероживающе-рекристаллизационный отжиг или рекристаллизационный отжиг при температуре не ниже 900°С, отличающийся тем, что температуру конца горячей прокатки поддерживают в интервале 780-860°С, после чего полосу охлаждают водой до температуры 580-630°С, при этом нагрев холоднокатаной полосы при отжиге сначала ведут до температуры 480-520°С со скоростью не менее 500°С/мин, затем до температуры не выше 800°С со скоростью не более 400°С/мин, а завершающий нагрев осуществляют с произвольной скоростью.

Документы, цитированные в отчете о поиске Патент 2012 года RU2442832C1

СПОСОБ ПОЛУЧЕНИЯ ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 2000
  • Чеглов А.Е.
  • Миндлин Б.И.
  • Гвоздев А.Г.
  • Логунов В.В.
  • Парахин В.И.
RU2186861C2
Способ термической обработки холоднокатаной изотропной электротехнической стали 1978
  • Гребеник Николай Петрович
  • Зенченко Федор Иванович
  • Цейтлин Александр Маркович
  • Казаджан Леонид Берунович
  • Голяев Валентин Иванович
  • Урванцев Геннадий Владимирович
SU742472A1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 2001
  • Салтыков Г.П.
  • Ламухин А.М.
  • Абраменко В.И.
  • Аракелов В.А.
  • Артемьев С.В.
  • Кузнецов В.В.
  • Вашпанов В.С.
  • Драницын А.А.
  • Трайно А.И.
RU2203331C2
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ИЗОТРОПНОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 2007
  • Степанов Александр Александрович
  • Артюшечкин Александр Викторович
  • Артемьев Сергей Викторович
  • Драницын Андрей Александрович
  • Долгов Андрей Васильевич
  • Кузнецов Виктор Валентинович
  • Салтыков Герман Павлович
  • Чекалов Виталий Петрович
RU2351663C1
Способ производства электротехнической изотропной стали 1988
  • Липухин Юрий Викторович
  • Ширинский Владимир Арефьевич
  • Степанов Александр Александрович
  • Пименов Александр Федорович
  • Трайно Александр Иванович
  • Поляков Василий Васильевич
  • Юсупов Валерий Сабитович
SU1539222A1
WO 2008078947 A1, 03.07.2008.

RU 2 442 832 C1

Авторы

Вольшонок Игорь Зиновьевич

Торшин Виктор Тимофеевич

Трайно Александр Иванович

Чеглов Александр Егорович

Кондратков Дмитрий Александрович

Русаков Андрей Дмитриевич

Даты

2012-02-20Публикация

2010-10-15Подача