СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ПОЛУОБРАБОТАННОЙ ЛЕГИРОВАННОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ Российский патент 2014 года по МПК C21D8/12 H01F1/16 

Описание патента на изобретение RU2529326C1

Изобретение относится к области металлургии, конкретно к технологии производства холоднокатаной полуобработанной легированной электротехнической изотропной стали с улучшенными механическими и магнитными свойствами, предназначенной для изготовления деталей магнитопровода, а именно статора и ротора электрического двигателя, методом высокоскоростной штамповки, сборки и отжига пакетов.

Одним из определяющих качеств полуобработанной электротехнической стали является ее способность к штамповке в пластины без сбоев на высоких скоростях работы штампов до 300 и более ударов в минуту, при этом на изготовленных пластинах должен отсутствовать заусенец и другие дефекты кромки. Электротехническая полуобработанная сталь должна соответствовать определенному комплексу механических свойств, например Барановический станкостроительный завод (предприятие производящее компрессоры для холодильников), использующий сталь марки М450-50К по EN 10341, с целью обеспечения способности стали к штамповке на высоких скоростях без образования дефектов, предъявляет требования, указанные в таблице 1:

Таблица 1 Марка стали Твердость HV, ед., не менее Предел прочности σв, Н/мм2, не менее Относительное удлинение δ, % Отношение предела текучести к пределу прочности (рекомендуемое значение) Удельные магнитные потери при 1,5 Тл (50 Гц), Вт/кг, не более М450-50К 148 420 2032 0,80-0,86 4,5

Известен способ производства полуобработанной электротехнической стали, включающей горячую прокатку стального сляба, отжиг горячекатаной полосы, холодную прокатку и отжиг холоднокатаной полосы, согласно которому температуру выдержки при отжиге горячекатаной полосы, содержащей мас.%: 0,2-2,6 кремния; 0,01-0,5 алюминия; не более 0,05 углерода; 0,1-1,5 марганца; 0,01-0,16 фосфора; не более 0,01 серы устанавливают по зависимости:

Тв=911+K×(Si-Mn), °C

где Тв - температура выдержки при отжиге горячекатаной полосы, °C;

911 - температура фазового превращения перлита в аустенит в чистом железе, °C;

Si - содержание кремния в стали, мас.%;

Mn - содержание марганца в стали, мас.%;

K - эмпирический коэффициент, учитывающий влияние содержания в стали кремния и марганца на температуру фазового превращения перлита в аустенит, равный (10-20)°C/%,

выдержку при этой температуре осуществляют в течение 80-200 с, а отжиг холоднокатаной стали полосы производить при температуре 780-850°C с обезуглероживанием металла до содержания углерода ≤0,010%. При необходимости после обезуглероживающего отжига холоднокатаной полосы осуществляют дрессировку с обжатием 1,0-7,0% (Патент РФ №2180925, МПК C21D 8/12, опубл. 27.03.2002 г.).

Недостатком данного способа являться обезуглероживание стали до содержания углерода ≤0,010%, что может привести к неоднородности по содержанию углерода и структуре готового металла, электромагнитные свойства стали при этом ухудшаться. Так же обработка металла по известному способу приводит к росту себестоимости продукции, так как после горячей прокаткой перед травлением необходимо осуществлять обработку в отдельностоящем агрегате (отжиг горячекатаной полосы в проходной печи).

Наиболее близким по технической сущности являться способ производства холоднокатаной полуобработанной электротехнической стали, включающий горячую прокатку стального раскисленного сляба, холодную прокатку и отжиг холоднокатаной полосы, согласно которому отжиг холоднокатаной стали, содержащей, мас.%: 0,01-1,6 кремния; 0,02-0,5 алюминия; не более 0,07 углерода; 0,1-1,5 марганца; 0,01-0,20 фосфора; не более 0,025 серы производят в атмосфере защитного газа в течение 5,5-11 мин при температуре в соответствии с соотношением t=K1+K2×Si±20°C,

где t - температура отжига стали, °C;

K1, K2 - экспериментально определенные коэффициенты: K1=600°C; K2=100°C/%;

Si - содержание кремния в стали, мас.%.

При необходимости после отжига холоднокатаной стали осуществляют дрессировку металла с обжатием 2-8% (Патент РФ №2178006, МПК C21D 8/12, опубл. 10.01.2002 г.).

Недостаток известного способа состоит в том, что готовый металл может иметь: внутренние структурные напряжения вследствие однократного отжига после холодной прокатки, разнобальность зерен феррита. Что не обеспечивает получение механических свойств на готовом прокате, которые стабильно гарантировали высокую скорость работы штампов без сбоев в подаче, а также отсутствие на изготовленных пластинах заусенцев и других дефектов кромки.

Техническим результатом предлагаемого изобретения является повышение качества проката за счет получения стабильных механических свойств, позволяющих гарантировать высокую скорость работы штампов при изготовлении заготовок (пластин статора и ротора), а так же отсутствие после штамповки дефектов кромки и заусенцев, при полном сохранении требований к магнитным свойствам.

Технический результат достигается тем, что в способе производства холоднокатаной полуобработанной легированной электротехнической стали, включающем выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, травление, холодную прокатку и обработку в непрерывном комбинированном агрегате, согласно изобретению выплавляют сталь, содержащую мас.%: 0,020-0,045 углерода, 0,5-2,10 кремния, 0,10-0,80 марганца, не более 0,015 серы, не более 0,15 фосфора, не более 0,10 хрома, не более 0,15 никеля, не более 0,15 меди, 0,10-0,60 алюминия, 0,002-0,010 азота, остальное железо и неизбежные примеси, окончательную деформацию полосы в чистовой группе непрерывного широкополосного стана осуществляют при температуре входа раската - не более 1070°C, температуру конца прокатки поддерживают 780-880°C, ускоренное охлаждение водой ведут со скоростью 20-45°C/с, температуру смотки устанавливают 480-640°C, рекристаллизационный отжиг холоднокатаного проката в непрерывном комбинированном агрегате ведут с частичным обезуглероживанием, до содержания углерода 0,012-0,030% с температурой 780-820°C, после чего осуществляют отпуск с температурой 450-600°C в течение 150-250 секунд. При необходимости после термической обработки холоднокатаного проката осуществляют дрессировку с обжатием 0,5-5%.

Сущность изобретения состоит в следующем. На механические и магнитные свойства полуобработанной легированной электротехнической стали влияют как химический состав стали, так и режимы деформационно-термической обработки на стане горячей прокатки, режим рекристаллизационного отжига, возможность проведения обезуглероживания и отпуска стали.

Углерод - один из упрочняющих элементов, определяющий конечную структуру стали, при ее производстве без проведения операции обезуглероживания. При содержании углерода менее 0,020% прочностные свойства стали ниже допустимого уровня, так же сталь имеет высокую неоднородность, разнобальность, штамповка стали с высокими скоростями работы штампов (число ходов до 300 ударов в минуту) невозможна. Увеличение содержания углерода более 0,045% приводит к сильному снижению пластичности стали, чрезмерному росту прочности, что недопустимо.

Кремний в стали применен как легирующий элемент, определяющий магнитные и механические свойства. При содержании кремния менее 0,50% сталь пластична, при штамповке на изделиях могут образовываться заусенцы, низкое содержание кремния приводит к росту электромагнитных потерь. При содержании кремния в стали более 2,10% снижается пластичность, имеет место охрупчивание стали, так же данное содержание кремния приводит к уменьшению магнитной индукции.

Марганец вводится в сталь с целью связать серу и обеспечить получение заданных механических свойств проката. При содержании марганца менее 0,10% при горячей прокатке возможно возникновение дефектов кромки. Увеличение содержания марганца более 0,80% чрезмерно упрочняет сталь, ухудшает ее пластичность.

Алюминий введен в сталь как легирующий элемент, обеспечивающий связывание азота и определяющий магнитные и механические свойства. При содержании алюминия менее 0,10% в растворе феррита может остаться несвязанный азот, который отрицательно влияет на магнитные свойства, сталь может становиться склонной к старению. Увеличение содержания алюминия более 0,60% приводит к загрязнению стали неметаллическими включениями, снижению магнитной индукции.

Сера отрицательно влияет на магнитные свойства стали, а так же может приводить к возникновению дефектов кромки при горячей прокатке. Поэтому ее содержание ограничено - не более 0,015%.

Хром, никель, медь в целом при высоких содержаниях могут вызвать ухудшения электромагнитных свойств стали: росту удельных электромагнитных потерь, снижение магнитной индукции. Содержание данных элементов ограничено хром - не более 0,10; никель - не более 0,15%; медь - не более 0,15%.

Фосфор добавляется в сталь как легирующий элемент. Увеличенное содержание фосфора благоприятно сказывается на механических и магнитных свойствах: увеличивается прочность стали, увеличивается отношения предела текучести к пределу прочности, снижается удлинение, снижается уровень электромагнитных потерь, увеличивается магнитная индукция. Содержание фосфора ограничено - не более 0,15%, так как его увеличение выше данного значение может привести к чрезмерному охрупчиванию стали.

Горячая прокатка с температурой начала прокатки в чистовой группе клетей не более 1070°C и последующая чистовая прокатка при температуре конца прокатки 780-880°C/с, охлаждение полосы на отводящем рольганге со скоростью 20-45°C/с, смотка полосы в рулон с температурой 480-640°C обеспечивают формирование оптимальной микроструктуры с высокой стабильностью и равномерностью зерен, данная структура сохраняется (наследуется) и после проведения операций холодной прокатки и отжига (при условии, что отжиг сопровождается операцией частичного обезуглероживания). Выше заявленных температурных пределов технический результат не достигался, а именно сталь приобретала структуру с высокой неоднородностью разнобальностью зерен феррита, неблагоприятную для штамповки и не обеспечивающую требуемые магнитные свойства.

Проведение рекристаллизационного отжига с частичным обезуглераживанием, до содержания углерода 0,012-0,030%, при температуре 780-820°C, с последующим отпуском при температуре 450-550°C в течение 150-250 секунд обеспечивает получение мелкозернистой полностью рекристаллизованной структуры, зерно феррита не менее 7 балла, наследуемой структуры г/к проката, с отсутствием внутренних напряжений. Данная структура обеспечивает получение требуемых значений механических свойств, указанных в таблице 1, при сохранении требуемых магнитных свойств стали. Комплекс указанных механических свойств обеспечивает высокую скорость работы штампов при изготовлении заготовок (пластин статора и ротора), а так же отсутствие после штамповки дефектов кромки и заусенцев.

При необходимости после термической обработки холоднокатаного проката осуществляют дрессировку с обжатием 0,5-5%. Дрессировку проводят с целью придания прокату требуемой шероховатости, чтобы предотвратить возможное слипание пластин при отжиге у потребителя. Обжатие в выбранных пределах приводит к оптимальному формированию размера микрозерна при отжиге металла у потребителя, после изготовления магнитопровода.

Примеры реализации способа. В кислородном конвертере выплавили 4 опытные плавки, химический состав которых приведен в таблице 2 (в т.ч. марки стали М450-50Е).

Таблица 2 Химический состав экспериментальных плавок № состава C, % Si, % Mn, % P, % Cr, % S, % Ni, % Cu, % Al, % N, % 1 0,026 1,57 0,223 0,056 0,024 0,0029 0,019 0,026 0,37 0,006 2 0,031 1,56 0,28 0,053 0,037 0,006 0,02 0,039 0,45 0,005 3 0,040 1,54 0,291 0,051 0,038 0,003 0,025 0,058 0,4 0,004 4 0,033 1,54 0,249 0,058 0,046 0,0033 0,035 0,061 0,44 0,006

Используемый для производства данной стали чугун предварительно обрабатывали на установке десульфурации для обеспечения в стали содержания серы не более 0,015%. Выплавленную сталь разливали на машине непрерывного литья в слябы сечением 250×1070 мм. Слябы нагревали в нагревательной печи с шагающими балками до температуры 1200-1250°C в течение 2,5-3,5 часов и прокатывали на непрерывном широкополосном стане 2000 в полосы толщиной 2,0 мм. Горячекатаные полосы на отводящем рольганге охлаждали водой до определенных температур и сматывали в рулоны. Охлажденные рулоны подвергали сернокислотному травлению в непрерывном травильном агрегате и правке в изгибо-растяжной машине. Затем травленые полосы прокатывали на 5-ти клетевом стане до конечной толщины 0,5 мм. Холоднокатаные рулоны обрабатывали на непрерывном комбинированном агрегате.

Деформационно-термические режимы обработки и свойства проката представлены в таблице 3.

Из таблиц 2-3 видно, что в случае реализации предложенного способа (варианты №1-№4 режим а) достигаются механические свойства проката, которые характеризуются дальнейшей способностью стали к обработке (штамповке, вырубке) на высоких скоростях хода штампа.

В случае запредельных значений заявленных параметров (вариант №4 режим в), а также при реализации известного способа (вариант №4 режим б) из-за низкого отношения предела текучести к пределу прочности технический результат получить не удалось.

Предлагаемая технология производства холоднокатаной полуобработанной легированной электротехнической стали обеспечивает также отсутствие дефектов кромки и заусенцев на изготовленных изделиях после проведения операции штамповки (вырубки).

Таблица 3 Технологические параметры производства и показатели механических свойств № состава Температура начала прокатки в чистовой группе клетей Тнп, °C Температура конца прокатки Ткп, °C Скорость охлаждения на отводящем рольганге, °C Температура смотки Тсм, °C Температура отжига, °C Температура отпуска, °C Обжатие при дрессировке, % Предел прочности σB, Н/мм2 σTB Относительное удлинение δ, % Твердость, HV Удельные магнитные потери при 1,5 Тл (50 Гц), Вт/кг 1 957 820 25 600 790 580 500 0,80 26 156 4,1 2 961 841 31 603 780 540 1,5 530 0,86 28 167 3,8 3 985 835 32 601 785 460 540 0,81 27 170 4,2 4 режим а 964 846 28 596 795 510 530 0,85 25 160 4,1 4 режим б 970 832 30 610 754 без обезуглероживания без отпуска 580 0,75 26 171 4,2 4 режим в 970 836 29 603 795 без обезуглероживания без отпуска 570 0,76 28 168 4,1

Похожие патенты RU2529326C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ПОЛУОБРАБОТАННОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 1998
  • Настич В.П.
  • Чеглов А.Е.
  • Миндлин Б.И.
  • Парахин В.И.
  • Барыбин В.А.
RU2135606C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ВЫСОКОПРОЧНОГО ПРОКАТА ДЛЯ ХОЛОДНОЙ ШТАМПОВКИ 2014
  • Мишнев Петр Александрович
  • Долгих Ольга Вениаминовна
  • Родионова Ирина Гавриловна
  • Быкова Юлия Сергеевна
  • Зайцев Александр Иванович
  • Ефимова Татьяна Михайловна
  • Макаров Никита Сергеевич
RU2562203C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ПОЛУОБРАБОТАННОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 2000
  • Скороходов В.Н.
  • Настич В.П.
  • Чернов П.П.
  • Чеглов А.Е.
  • Миндлин Б.И.
  • Парахин В.И.
  • Барыбин В.А.
RU2178006C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ПРОКАТА 2020
  • Туртыгин Сергей Сергеевич
  • Смирнов Константин Сергеевич
  • Никонов Андрей Викторович
  • Антонов Павел Валерьевич
  • Шурыгина Марина Викторовна
RU2745411C1
СПОСОБ ПРОИЗВОДСТВА ТОНКОЛИСТОВОГО ГОРЯЧЕКАТАНОГО ПРОКАТА 2014
  • Мишнев Петр Александрович
  • Долгих Ольга Вениаминовна
  • Антонов Павел Валерьевич
  • Чикинова Ольга Евгеньевна
RU2547389C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ПРОКАТА ДЛЯ ЭМАЛИРОВАНИЯ 2008
  • Мальцев Андрей Борисович
  • Мишнев Петр Александрович
  • Шурыгина Марина Викторовна
  • Щелкунов Игорь Николаевич
  • Чистяков Алексей Николаевич
  • Савиных Анатолий Федорович
  • Палигин Роман Борисович
  • Павлов Сергей Игоревич
  • Жиленко Сергей Владимирович
  • Струнина Людмила Михайловна
RU2379361C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ 2008
  • Немтинов Александр Анатольевич
  • Кузнецов Виктор Валентинович
  • Струнина Людмила Михайловна
  • Золотова Лариса Юрьевна
  • Долгих Ольга Вениаминовна
  • Ордин Владимир Георгиевич
  • Ефимов Семен Викторович
  • Головко Владимир Андреевич
RU2361934C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ВЫСОКОПРОЧНОГО ПРОКАТА ДЛЯ ХОЛОДНОЙ ШТАМПОВКИ 2014
  • Мишнев Петр Александрович
  • Долгих Ольга Вениаминовна
  • Родионова Ирина Гавриловна
  • Быкова Юлия Сергеевна
  • Зайцев Александр Иванович
  • Ефимова Татьяна Михайловна
  • Макаров Никита Сергеевич
RU2562201C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ПОЛУОБРАБОТАННОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Чеглов А.Е.
  • Миндлин Б.И.
  • Парахин В.И.
  • Барыбин В.А.
RU2180925C2
СПОСОБ ПРОИЗВОДСТВА СВЕРХНИЗКОУГЛЕРОДИСТОЙ ХОЛОДНОКАТАНОЙ СТАЛИ ДЛЯ ГЛУБОКОЙ ВЫТЯЖКИ И ПОСЛЕДУЮЩЕГО ОДНОСЛОЙНОГО ЭМАЛИРОВАНИЯ 2014
  • Мишнев Петр Александрович
  • Антонов Павел Валерьевич
  • Мезин Филипп Иосифович
  • Шурыгина Марина Викторовна
  • Абрамов Александр Сергеевич
  • Митрофанов Артем Викторович
  • Корытин Павел Владимирович
  • Зайцев Александр Иванович
  • Родионова Ирина Гавриловна
  • Алалыкин Никита Владимирович
RU2547976C1

Реферат патента 2014 года СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ПОЛУОБРАБОТАННОЙ ЛЕГИРОВАННОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ

Изобретение относится к области металлургии, конкретно к технологии производства полуобработанной электротехнической изотропной стали, предназначенной для изготовления деталей магнитопровода. Для повышения качества проката за счет получения стабильных механических свойств при полном сохранении требований к магнитным свойствам осуществляют выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, травление, холодную прокатку и обработку на непрерывном комбинированном агрегате, при этом выплавляют сталь, содержащую в мас.%: углерод 0,020-0,045,

кремний 0,50-2,10, марганец 0,10-0,80, сера не более 0,015, фосфор не более 0,015, хром не более 0,10, никель не более 0,15, медь не более 0,15,алюминий 0,10-0,60, азот 0,002-0,010, железо и неизбежные примеси - остальное, окончательную деформацию полосы в чистовой группе непрерывного широкополосного стана осуществляют при температуре входа раската - не более 1070°C, температуру конца прокатки поддерживают 780-880°C, ускоренное охлаждение ведут со скоростью 20-45°C/с, температуру смотки устанавливают 480-640°C, рекристаллизационный отжиг холоднокатаного проката в непрерывном комбинированном агрегате ведут с частичным обезуглероживанием, до содержания углерода 0,012-0,030%, с температурой 780-820°C, после чего проводят отпуск стали с температурой 450-600°C в течение 150-250 секунд. При необходимости после термической обработки холоднокатаного проката осуществляют дрессировку металла с обжатием 0,5-5%. 1 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 529 326 C1

1. Способ производства холоднокатаной полуобработанной легированной электротехнической стали, включающий выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, травление, холодную прокатку и термическую обработку в непрерывном комбинированном агрегате, отличающийся тем, что выплавляют сталь, содержащую компоненты в следующем соотношении, мас.%:
углерод 0,020-0,045 кремний 0,50-2,10 марганец 0,10-0,80 сера не более 0,015 фосфор не более 0,015 хром не более 0,10 никель не более 0,15 медь не более 0,15 алюминий 0,10-0,60 азот 0,002-0,010 железо и неизбежные примеси остальное,


при этом окончательную деформацию полосы в чистовой группе непрерывного широкополосного стана осуществляют при температуре входа раската не более 1070°C, температуру конца прокатки поддерживают 780-880°C, ведут ускоренное охлаждение со скоростью 20-45°C/с, температуру смотки полос в рулоны устанавливают 480-640°C, ведут рекристаллизационный отжиг холоднокатаного проката с температурой 780-820°C в непрерывном комбинированном агрегате с частичным обезуглероживанием до содержания углерода 0,012-0,030%, после чего проводят отпуск стали с температурой 450-600°C в течение 150-250 секунд.

2. Способ по п.1, отличающийся тем, что после термической обработки холоднокатаного проката осуществляют дрессировку металла с обжатием 0,5-5%.

Документы, цитированные в отчете о поиске Патент 2014 года RU2529326C1

СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ПОЛУОБРАБОТАННОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Чеглов А.Е.
  • Миндлин Б.И.
  • Парахин В.И.
  • Барыбин В.А.
RU2180925C2
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ПОЛУОБРАБОТАННОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 2000
  • Скороходов В.Н.
  • Настич В.П.
  • Чернов П.П.
  • Чеглов А.Е.
  • Миндлин Б.И.
  • Парахин В.И.
  • Барыбин В.А.
RU2178006C1
СПОСОБ НЕПРЕРЫВНОГО ЛИТЬЯ ПОЛОСЫ НЕОРИЕНТИРОВАННОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ СТАЛИ 2003
  • Шун Джерри У.
  • Комсток Роберт Мл.
RU2318883C2
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1
EP 1057898A2, 06.12.2000
EP 1577405A1, 21.09.2005

RU 2 529 326 C1

Авторы

Мишнев Петр Александрович

Дятлов Илья Алексеевич

Антонов Павел Валерьевич

Черняев Михаил Геннадьевич

Курсаев Александр Михайлович

Драницын Андрей Александрович

Корытин Павел Владимирович

Даты

2014-09-27Публикация

2013-08-13Подача