Изобретение относится к разработке адгезивного состава для крепления резины к стекловолокнонаполненному политетрафторэтилену (Ф4С25: фторопласт-4, содержащий 25% вес. стекловолокна) во время вулканизации и может быть использовано в производстве резинотехнических изделий для автомобильной промышленности.
Политетрафторэтилен (ПТФЭ), вследствие особенностей своего химического и физического строения, обладает исключительной химической инертностью, широким диапазоном температур эксплуатации (от -269°C до +260°C), низким значением коэффициента трения, неудовлетворительной адгезионной способностью.
Для повышения адгезии ПТФЭ обычно используются приемы модифицирования его поверхности плазмой (Данилин Б.С. Применение низкотемпературной плазмы для травления и очистки материалов. - М.: Энергоатомиздат, 1987, 264 с., Трофименко К.А., Кучеева Е.А. Плазмохимическая модификация поверхности тефлона. XXX Гагаринские чтения. Тезисы докладов международной молодежной научной конференции, т.6., М.: ЛАТМЭС, 2004, с.23-24).
Известно использование карбофункциональных кремний-органических производных, в частности 3-аминопропилтриэтоксисилана (АГМ-9), для приготовления клеев и обработки поверхностей (Моцарев Г.В., Соболевский М.В., Розенберг В.Р. Карбофункциональные органосиланы и органосилоксаны. - М.: Химия, 1990, с.124; Новицкая С.П., Нудельман З.Н., Донцов А.А. Фторэластомеры. М.: Химия, 1988, с.180). Такие клеи могут содержать смолы (резольные, фенольные), 3-амино-пропилтриэтоксисилан (АГМ-9), растворитель (метилэтилкетон). Содержание воды в органическом растворителе - метилэтилкетоне (ТУ 6-09-782-76) лимитируется нормативным документом и не превышает 0,8% вес. Органический растворитель в таких клеях является основным, вода - второстепенным. При разбавлении метилэтилкетона водой в таком клее существенно падает адгезивная прочность резины к металлу.
Известны водные клеи фирмы Henkel XW 7484 и XW7856, представляющие собой водные дисперсии, коалесцирующие на поверхности разогретого металла в монолитную пленку (Морозов Ю.В., Резниченко С.В. Последние достижения в области химии и технологии эластомеров - Международная конференция по каучуку и резине IRC'98, Каучук и резина, №1, 1999, с.46). Такие адгезивы сравнимы с системами, содержащими растворитель, хотя и несколько уступают им по прочности крепления резины к металлу. Однако отсутствуют данные, на основе каких эластомеров осуществляется крепление резин, и о составах этих эластомеров (Байерсдорф Д. Крепление резин к металлу с помощью связующих систем "Хенкель". Каучук и резина, №6, 1996, с.3…7).
Известны клеи и адгезивы для крепления изделий из резины на основе акрилатных каучуков к металлическим поверхностям во время вулканизации: Хемосилы 350 и 360 (сухой остаток 38-42% вес. и 42-45% вес., соответственно) фирмы Henkel, водо-эмульсионный клей ВА-1 (ТУ 2294-330-12654617-95, сухой остаток не менее 12% вес.).
В состав клеев Хемосил 350 и 360 (по аналогии с Хемосил 211) входят растворимые органические полимеры и диспергированные твердые вещества в органических растворителях (этаноле/этилацетате). Данный продукт входит в группу легковоспламеняемых веществ (Henkel KGaA, SPK 04/90).
Основными недостатками являются применение при их изготовлении различных растворителей и высокое содержание сухого остатка, представляющего собой набор различных растворимых полимеров, диспергированных твердых веществ.
В состав водоэмульсионного клея ВА-1 входит фенольная водорастворимая смола, полимеры (полибутадиен) и диспергированные твердые вещества. Конкретный состав не приводится.
Известно введение в состав резины модифицирующей добавки Р-152 (четвертичной аммонийной соли 1,8-диазобицикло[5,4,0]-ундецена-7 и новолачной смолы) для увеличения адгезии резин на основе фтор- и эпихлоргидринкаучуков (Нудельман З.Н. Фторкаучуки: основы, переработка, применение. М.: ООО ПИФРИАС, 2007, 364 с.).
Известен также адгезивный состав (Гольфарб В.И., Ляпаева Н.А., Горбань В.И., Пичхидзе С.Я. Патент №2180675. Адгезивный состав), представляющий собой водный адгезив для фтористых резин, пригодный для крепления акрилатных резин к металлической поверхности арматуры манжеты. Основным недостатком адгезива является необходимость при его использовании соблюдать гомогенность состава, который представляет собой набор различных растворимых полимеров и диспергированных твердых веществ.
Известен химический способ обработки поверхности ПТФЭ (Ковачич Л. Склеивание металлов и пластмасс: пер. со словац. / Под ред. А.С.Фрейдина - М.: Химия, 1985, 240 с.), который обеспечивает равномерность обработки и высокую адгезионную прочность. Сущность способа заключается в обработке ПТФЭ в течение 5-15 минут при 20°С раствором, приготовленным следующим образом: 128 г нафталина растворяют в 1 л тетрагидрофурана, добавляют 23 г металлического натрия и 2 часа перемешивают. Затем ПТФЭ промывают ацетоном, водой и сушат.
Наиболее близким к заявляемому способу является химический способ обработки поверхности ПТФЭ (Зуев А.В., Панова Л.Г., Пичхидзе С.Я. Патент №2400493. Способ обработки поверхности стекловолокнонаполненного политетрафторэтилена). Данный способ представляет собой последовательную обработку поверхности стекловолокнонаполненного политетрафторэтилена натрий-нафталиновым комплексом в тетрагидрофуране и 3-аминопропилтриэтоксисиланом в этиловом спирте с последующей сушкой при температуре 70-90°C (прототип). Недостатком данного способа является низкая прочность крепления стекловолокнонаполненного политетрафторэтилена с акрилатной и фтористой резинами при их совулканизации.
Техническим результатом изобретения является достижение высокой прочности крепления акрилатных и фтористых резин к поверхности стекловолокнонаполненного политетрафторэтилена.
Указанный технический результат достигается путем последовательной обработки поверхности стекловолокнонаполненного политетрафторэтилена натрий-нафталиновым комплексом в тетрагидрофуране и 3-глицидоксипропилтриметоксиланом в этиловом спирте с последующей сушкой при температуре 70-90°C.
Пример. Адгезия стекловолокнонаполненного ПТФЭ к акрилатным и фтористым резинам.
В заявленном техническом решении используется химический метод модифицирования поверхности стекловолокнонаполненного ПТФЭ, заключающийся в последовательном погружении образца на 5 минут в натрий-нафталиновый комплекс в тетрагидрофуране с последующей промывкой ацетоном, водой и сушкой. Затем проводится обработка образца 3-глицидоксипропилтриметоксисиланом в этиловом спирте с последующей сушкой при температуре 70-90°C.
Оптимальная концентрация 3-глипидоксипропилтриметоксисиланом в этиловом спирте составляет 2-4% вес. Концентрации менее 2% вес. и более 4% вес., как показали эксперименты, приводят к снижению прочности адгезии резин и стекловолокнонаполненного ПТФЭ.
Соединение резиновых смесей к модифицированным образцам Ф4С25 производили в вулканизационном прессе.
Определение прочности адгезионного взаимодействия резин и стекловолокнонаполненного ПТФЭ проводилось по ГОСТ 6768-75.
При этом определялось усилие, необходимое для разделения слоев резины и Ф4С25. Испытывался образец шириной (25±0,5) мм, толщиной 4 мм и длиной, обеспечивающей расслоение на участке не менее 100 мм. Испытания проводили на разрывной машине Zwick/Roell со скоростью перемещения подвижного захвата 100 мм/мин.
Результаты исследования приведены в табл.1. Расшифровка составов резиновых смесей приведена в табл.2.
Анализ результатов показал, что прочность связи «резина-Ф4С25» после химической обработки Ф4С25 раствором натрий-нафталинового комплекса в тетрагидрофуране с последующим нанесением А-187 в этиловом спирте в 1,11-1,15 раза превышает значение прочности связи при обработке поверхности Ф4С25 раствором натрий-нафталинового комплекса в тетрагидрофуране с последующим нанесением АГМ-9. А-187, как бифункциональное соединение, обеспечивает химическое взаимодействие между матрицей резины (каучуком) и поверхностью Ф4С25, чем достигается повышение прочности связи «резина-Ф4С25». Причем этот факт отмечен для всех исследованных резиновых смесей, приведенных в табл.2.
Первоначальная обработка А-187, затем химическая модификация, отрицательно сказывается на прочности связи «резина-Ф4С25». Цвет поверхности Ф4С25 изменяется до светло-коричневого. Это связано с тем, что присутствие А-187 на поверхности Ф4С25 препятствует более полному дефторированию полимера и, соответственно, приобретению темно-коричневого цвета.
При обработке поверхности Ф4С25 раствором натрий-нафталинового комплекса происходит дефторирование полимерной цепи и образование двойных связей в макромолекуле ПТФЭ, что подтверждается появлением в ИК-спектре полос поглощения (νs=1592,0 см-1, νas=1417,7 см-1), соответствующих колебаниям связи С=С, отсутствующих у немодифицированного Ф4С25. По образующимся кратным связям может осуществляться взаимодействие стекловолокнонаполненного ПТФЭ с аминогруппой карбамата гексаметилендиамина, входящего в состав акрилатной резины в качестве связующего.
Не исключено, что остаточные метокси-группы А-187 в процессе вулканизации при высокой температуре и давлении продолжают связываться с компонентами резины, а именно с Si-OH группами минеральных наполнителей (белая сажа БС-100, диатомитовая земля Celite-219 и др.) акрилатной резины.
Присутствие в А-187 эпокси-группы может привести к взаимодействию с группой -ОН бис-фенола (связующее фторкаучука) в процессе привулканизации стекловолокнонаполненного ПТФЭ к фтористой резине.
Таким образом, прочность связи стекловолокнонаполненного ПТФЭ с резиной на основе фтористых и акрилатных каучуков может быть повышена дополнительной модификацией поверхности фторопластового композита Ф4С25 3-глицидоксипропилтриметоксисиланом в этиловом спирте, предварительно обработанного раствором натрий-нафталинового комплекса в тетрагидрофуране.
При этом расход составов на первой и второй стадиях обработки поверхности Ф4С25 составляет 2900±50 и 300±10 мл/м2, соответственно.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ СТЕКЛОВОЛОКНОНАПОЛНЕННОГО ПОЛИТЕТРАФТОРЭТИЛЕНА | 2008 |
|
RU2400493C2 |
СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ ФТОРСОДЕРЖАЩЕЙ РЕЗИНЫ | 2014 |
|
RU2580722C1 |
СПОСОБ КРЕПЛЕНИЯ РЕЗИН НА ОСНОВЕ АКРИЛАТНЫХ КАУЧУКОВ К МЕТАЛЛИЧЕСКИМ ПОВЕРХНОСТЯМ | 2004 |
|
RU2282643C1 |
Способ обработки поверхности фторсодержащей резины | 2019 |
|
RU2758411C2 |
АДГЕЗИВНЫЙ СОСТАВ | 2010 |
|
RU2470055C2 |
Способ склеивания фторопластовой стеклоткани с поверхностью изделия | 2021 |
|
RU2777642C1 |
АДГЕЗИВНЫЙ СОСТАВ ДЛЯ КРЕПЛЕНИЯ ИЗДЕЛИЙ ИЗ РЕЗИН НА ОСНОВЕ НИТРИЛЬНЫХ КАУЧУКОВ К МЕТАЛЛИЧЕСКИМ ПОВЕРХНОСТЯМ | 2004 |
|
RU2300547C2 |
КОМПОЗИЦИЯ В КАЧЕСТВЕ КЛЕЕВОГО ПОДСЛОЯ ДЛЯ КРЕПЛЕНИЯ РЕЗИН К МЕТАЛЛУ ПРИ ВУЛКАНИЗАЦИИ ИЛИ В КАЧЕСТВЕ АДГЕЗИВА ДЛЯ ГОРЯЧЕГО КРЕПЛЕНИЯ РЕЗИН НА ОСНОВЕ ФТОРКАУЧУКОВ И АКРИЛАТНЫХ КАУЧУКОВ | 2006 |
|
RU2315796C1 |
АДГЕЗИВНЫЙ СОСТАВ | 2000 |
|
RU2180675C2 |
РЕЗИНОВАЯ СМЕСЬ | 2010 |
|
RU2437906C1 |
Изобретение относится к адгезивному составу для крепления резин к стекловолокнонаполненному политетрафторэтилену во время вулканизации для использования в производстве резинотехнических изделий для автомобильной промышленности. Поверхности стекловолокнонаполненного политетрафторэтилена обрабатывают раствором натрий-нафталинового комплекса в тетрагидрофуране, с последующим нанесением раствора 3-глицидоксипропилтриметоксисилана и сушкой при температуре 70-90°C. Техническим результатом изобретения является достижение высокой прочности крепления акрилатных и фтористых резин к поверхности стекловолокнонаполненного политетрафторэтилена. 2 табл., 1 пр.
Способ обработки поверхности стекловолокнонаполненного политетрафторэтилена для крепления к нему резин на основе акрилатного или фтористого каучука раствором натрий-нафталинового комплекса в тетрагидрофуране с последующим нанесением 2-4 вес.%-ного раствора 3-глицидоксипропилтриметоксисилана в этиловом спирте и сушкой при температуре 70-90°C.
RU 2008135056 A, 10.03.2010 | |||
АДГЕЗИВНЫЙ СОСТАВ | 2000 |
|
RU2180675C2 |
RU 2007145750 A, 20.07.2008 | |||
СУДОВОЕ ВЫСОКОВЯЗКОЕ ТОПЛИВО ДЛЯ СРЕДНЕОБОРОТНЫХ И МАЛООБОРОТНЫХ СУДОВЫХ ДИЗЕЛЕЙ (ВАРИАНТЫ) | 1995 |
|
RU2079542C1 |
Днище хранилища для сыпучих материалов | 1982 |
|
SU1065573A1 |
Авторы
Даты
2012-03-27—Публикация
2010-12-27—Подача