СПОСОБ УЛЬТРАЗВУКОВОЙ ОБРАБОТКИ СВАРНЫХ МЕТАЛЛОКОНСТРУКЦИЙ Российский патент 2012 года по МПК C21D1/04 C21D9/50 C21D7/06 

Описание патента на изобретение RU2447162C2

Изобретение относится к области ультразвуковой релаксационно-упрочняющей, сопровождающейся пластическим деформированием и озвучиванием обрабатываемой поверхности ультразвуком, и пассивирующей обработки, и может быть использовано в различных отраслях машиностроения, например строительстве мостов, судостроении, нефтяной и газовой промышленности, для ультразвуковой релаксационно-упрочняющей обработки металлоконструкций, например околошовных зон и швов сварных соединений и других поверхностей.

Как известно, в основе ультразвуковой виброударной обработки твердых тел лежит ряд сложных физических явлений, которые можно разделить на две группы:

1) явления, связанные с локальным воздействием вибрирующего инструмента на обрабатываемую поверхность: пластическое деформирование или хрупкое разрушение поверхностных слоев, изменение сил трения на границе «инструмент - изделие», выделение тепла и повышение температуры на границе двух колеблющихся деталей - граничная диссипация (рассеяние механической энергии и переход ее в тепловую);

2) явления в объеме обрабатываемой детали, связанные с действием ультразвуковых деформаций (это явление называют звуковой деформацией), вызванных ультразвуковыми волнами: ускорение диффузии и диффузионных превращений, увеличение скорости ползучести или релаксации напряжений, снижение сопротивления пластическому деформированию, акустические потери в материале - объемная диссипация энергии, и др.

Известен способ ультразвуковой обработки (см. а.с. №683873 СССР, МПК2 B23K 28/00, опубл. 05.09.79, БИ №33), в котором с целью повышения сопротивляемости возникновению холодных трещин обработку выполняют по следующему режиму: статическая нагрузка 40…50 кгс; амплитуда колебаний торца волновода на холостом ходу 60…65 мкм; скорость обработки 18…20 м/час; частота колебаний 18…22 кГц; в качестве источника ультразвуковых колебаний использовался магнитострикционный преобразователь (акустическая система), принятый за прототип.

Вышеописанный способ, принятый за прототип, позволяет очистить сварочный шов и околошовную зону от окалины; сформировать нужный радиус сопряжения сварного соединения с одновременным устранением сварочных дефектов типа подрезов; повысить циклическую прочность сварного соединения за счет снижения величины и концентрации механических напряжений в шве и околошовной зоне; создать на поверхности шва и околошовной области упрочненную зону с повышенной устойчивостью к образованию трещин и коррозии. Эффективность технологии характеризуется локальным воздействием вирирующего инструмента на обрабатываемую поверхность путем создания поверхностного наклепа методом ультразвуковой виброударной обработки.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что для снижения технологических остаточных напряжений практически не используются явления, связанные с действием ультразвуковых деформаций в объеме обрабатываемой детали, вызванных ультразвуковыми волнами.

Сущность изобретения заключается в следующем.

Для снятия остаточных напряжений в металлоконструкциях на пьезокерамическую акустическую систему подают синусоидальные частотно-модулированные ультразвуковые колебания. При этом не наблюдается скачкообразного изменения амплитуды ультразвукового сигнала, в силу этого в поверхностном слое образуются равномерно изменяющиеся остаточные напряжения, и из-за уменьшения коэффициента затухания синусоидального сигнала обеспечивается увеличение степени наклепа обрабатываемой поверхности детали, а также повышается действие ультразвуковых деформаций в объеме обрабатываемой детали, что положительно сказывается на перераспределении остаточных напряжений в объеме обрабатываемой детали.

Технический результат - повышение эффективности снятия остаточных напряжений в неразъемных соединения металлоконструкций; улучшение эксплуатационных характеристик изделий - усталостной прочности, контактной жесткости, износостойкости, коррозионной стойкости, надежности сварного соединения.

Указанный технический результат при осуществлении изобретения достигается тем, что заявляемый способ включает статическое нагружение сварного шва и ультразвуковое воздействие на сварной шов с помощью ультразвукового инструмента-волновода посредством акустической системы.

Особенность заключается в том, что ультразвуковое воздействие на сварной шов производят с помощью пьезокерамической акустической системы путем подачи на нее синусоидальных частотно-модулированных ультразвуковых колебаний с частотой 20 кГц. Это приводит к значительному снятию остаточных напряжений в сварных соединениях металлов. Режимы обработки, включающие статическое нагружение ультразвукового инструмента, скорость обработки и амплитуда колебаний торца волновода, назначаются в зависимости от оптимального для данных условий обработки снятия остаточных напряжений, определяемого экспериментально для каждого конкретного случая, обусловленного маркой (марками) обрабатываемого материала и его толщиной, параметрами электрического тока и маркой электрода (для электродуговой сварки), параметрами шва и др.

Сведения, подтверждающие возможность осуществления изобретения с получением вышеуказанного технического результата.

На фиг.1 - схема устройства, реализующая предлагаемый способ; на фиг.2 - иллюстрация ультразвуковых сигналов: а) без модуляции; б) частотная модуляция.

Инструментом для обработки (фиг.1) служит пьезокерамический преобразователь 1 с коническим волноводом 2, далее поз.1 и 2 объединены под общим названием «пьезокерамическая акустическая система», перемещаемая по сварному шву и прижимаемая к нему статической нагрузкой Pcm.

Способ ультразвуковой обработки сварных металлоконструкций заключается в том, что ультразвуковое воздействие на сварной шов производят с помощью пьезокерамической акустической системы путем подачи на нее синусоидальных частотно-модулированных ультразвуковых колебаний (фиг.2,б) с частотой 20 кГц от ультразвукового генератора (условно не показан) через кабель 3 (см. фиг.1). А режимы обработки - статическая нагрузка Pcm, скорость обработки и время обработки определяются экспериментально, для каждого конкретного случая, обусловленного маркой (марками) обрабатываемого материала и его толщиной, параметрами электрического тока и маркой электрода (для электродуговой сварки), параметрами шва и др.

Вследствие введения энергии синусоидальных частотно-модулированных ультразвуковых колебаний (см. фиг.2,б) в сочетании с оптимальными режимами обработки ускоряются процессы релаксации остаточных сварочных и технологических напряжений не только в области шва и околошовной области, но и во всем объеме обрабатываемой детали.

Пример, В экспериментальных исследованиях использовались образцы в виде пластин прямоугольной формы 4 (см. фиг.1) из конструкционной углеродистой качественной стали 20 толщиной 10 мм, сваренных между собой при помощи электродуговой сварки.

Амплитуда колебаний насадка 5…15 мкм, рабочая частота 20 кГц, номинальная мощность ультразвукового генератора 50 Вт, продольная скорость стола станка 3,1 м/мин, статическая сила прижима пьезокерамической акустической системы 10 Н.

Параметры ультразвукового сигнала вырабатываемого ультразвуковым генератором (при включенной в цепь пьезокерамической акустической системе) (см. фиг.2):

Вид ультразвукового сигнала Первый импульс 5 Второй импульс 6 Частота следования импульсов ωи, кГц Амплитуда U1, В Частота ω1, кГц Амплитуда U2, В Глубина модуляции, % Частота ω2, кГц Без модуляции (см. фиг.2,а) 0…450 18,6 - - - - Частотная модуляция (см. фиг.2,б) 0…450 20,0 0…337,5 25 12,5 1

В результате проведенных исследований установлено, что использование энергии синусоидальных частотно-модулированных ультразвуковых колебаний (см. фиг.2,б) позволяет снизить остаточные напряжения на 27…29%, при этом ультразвуковые колебания без модуляции (см. фиг.2,а) позволяют снизить остаточные напряжения на 20…22%.

Похожие патенты RU2447162C2

название год авторы номер документа
СПОСОБ УЛЬТРАЗВУКОВОЙ ОБРАБОТКИ СВАРНЫХ МЕТАЛЛОКОНСТРУКЦИЙ 2008
  • Рудецкий Александр Васильевич
RU2394919C1
СПОСОБ АКУСТИЧЕСКОЙ ОБРАБОТКИ БАНДАЖА И КОЛЕСНОГО ЦЕНТРА ПРИ СБОРКЕ КОЛЕСНОЙ ПАРЫ 2014
  • Бричков Антон Сергеевич
  • Козик Владимир Васильевич
RU2565446C1
УЛЬТРАЗВУКОВОЙ ОБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ ДЛЯ ДЕФОРМАЦИОННОГО УПРОЧНЕНИЯ И РЕЛАКСАЦИОННОЙ ОБРАБОТКИ 2009
  • Рудецкий Александр Васильевич
RU2409461C2
УЛЬТРАЗВУКОВОЙ ОБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ ДЛЯ ДЕФОРМАЦИОННОГО УПРОЧНЕНИЯ И РЕЛАКСАЦИОННОЙ ОБРАБОТКИ 2008
  • Киселев Евгений Степанович
  • Рудецкий Александр Васильевич
  • Романов Сергей Александрович
RU2393953C2
УЛЬТРАЗВУКОВОЙ ОБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ ДЛЯ ДЕФОРМАЦИОННОГО УПРОЧНЕНИЯ И РЕЛАКСАЦИОННОЙ ОБРАБОТКИ 2008
  • Киселев Евгений Степанович
  • Рудецкий Александр Васильевич
  • Романов Сергей Александрович
RU2392106C1
СПОСОБ УЛЬТРАЗВУКОВОЙ СВАРКИ ТОЛСТОСТЕННЫХ КОНСТРУКЦИЙ 2015
  • Файзуллин Артур Венерович
  • Файрушин Айрат Минуллович
  • Фаткуллин Марат Рафисович
  • Зарипов Марс Зульфатович
RU2605888C1
УЛЬТРАЗВУКОВОЙ ИНСТРУМЕНТ ДЛЯ СНЯТИЯ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ И УПРОЧНЕНИЯ ПОВЕРХНОСТЕЙ МЕТАЛЛОВ 2004
  • Холопов Ю.В.
RU2252859C1
Способ получения серобитума 2018
  • Никитченко Наталья Викторовна
  • Красников Павел Евгеньевич
  • Тюкилина Полина Михайловна
  • Пименов Андрей Александрович
  • Тыщенко Владимир Александрович
RU2725227C2
Устройство для проведения хирургических операций с применением ультразвуковых колебаний 2021
  • Соловьев Алексей Олегович
  • Молдаванов Валерий Витальевич
RU2774586C1
УЛЬТРАЗВУКОВОЙ ПЬЕЗОКЕРАМИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2010
  • Варнаков Александр Евгеньевич
  • Малишевский Александр Олегович
RU2448782C1

Иллюстрации к изобретению RU 2 447 162 C2

Реферат патента 2012 года СПОСОБ УЛЬТРАЗВУКОВОЙ ОБРАБОТКИ СВАРНЫХ МЕТАЛЛОКОНСТРУКЦИЙ

Изобретение может быть использовано в различных отраслях машиностроения, например строительстве мостов, судостроении, нефтяной и газовой промышленности, для ультразвуковой релаксационно-упрочняющей обработки металлоконструкций, например околошовных зон и швов сварных соединений и других поверхностей. Способ ультразвуковой релаксационно-упрочняющей обработки сварных швов включает статическое нагружение сварного шва и ультразвуковое воздействие на сварной шов с помощью ультразвукового инструмента-волновода посредством акустической системы, при этом ультразвуковое воздействие на сварной шов производят с помощью пьезокерамической акустической системы путем подачи на нее синусоидальных частотно-модулированных ультразвуковых колебаний. Технический результат заключается в снятии остаточных напряжений в сварных соединениях. 1 пр., 1 табл., 2 ил.

Формула изобретения RU 2 447 162 C2

Способ ультразвуковой релаксационно-упрочняющей обработки сварных швов, включающий статическое нагружение сварного шва и ультразвуковое воздействие на сварной шов с помощью ультразвукового инструмента-волновода посредством акустической системы, отличающийся тем, что ультразвуковое воздействие на сварной шов производят с помощью пьезокерамической акустической системы путем подачи на нее синусоидальных частотно-модулированных ультразвуковых колебаний.

Документы, цитированные в отчете о поиске Патент 2012 года RU2447162C2

Способ ультразвуковой обработки сварных швов 1977
  • Сагалевич Валерий Михайлович
  • Федоров Валентин Георгиевич
  • Янченко Юрий Алексеевич
  • Макушин Георгий Юрьевич
  • Виноградов Владимир Николаевич
SU683873A1
Способ снятия внутренних напряжений в деталях вибрацией 1988
  • Задорожний Николай Алексеевич
  • Дрыга Александр Иосифович
  • Зелик Виталий Павлович
  • Астапенко Александр Ильич
  • Рузанов Юрий Николаевич
  • Мордвинов Анатолий Иванович
SU1694659A1
Способ обработки изделий 1987
  • Дитмар Шнайдер
SU1620051A3
СПОСОБ СТАБИЛИЗАЦИИ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ В ПОВЕРХНОСТНОМ СЛОЕ ДЕТАЛИ 1998
  • Кочерженко В.Г.
  • Степанов В.Н.
  • Косырев С.П.
  • Петухов В.В.
  • Аникин Д.В.
RU2133282C1

RU 2 447 162 C2

Авторы

Рудецкий Александр Васильевич

Даты

2012-04-10Публикация

2010-04-06Подача