СПОСОБ ПЕРЕРАБОТКИ МЕДНО-НИКЕЛЕВОГО СЕРНОКИСЛОГО РАСТВОРА Российский патент 2012 года по МПК C22B23/00 C22B15/00 C22B3/44 

Описание патента на изобретение RU2449033C1

Изобретение относится к гидрометаллургии меди и никеля и может быть использовано при переработке сернокислых растворов электролитического рафинирования меди, участков гальванической обработки сталей и регенерации отработанных щелочных аккумуляторов.

Известен способ переработки отработанного медно-никелевого сернокислого раствора (см. патент РФ №20705 89, кл6. С22В 3/38 С25С 1/12, С22 В 15:00,1996), включающий экстракцию серной кислоты органическим экстрагентом, обработку рафината и реэкстракцию серной кислоты, отличающийся тем, что перед экстракцией сернокислый раствор упаривают до концентрации серной кислоты 350-600 г/л, охлаждают при кристаллизации содержащихся в нем сульфатов металлов и отделяют их от основного маточного раствора, из которого серную кислоту экстрагируют фосфорорганическим экстрагентом при соотношении O:В=(3-5):1, реэкстрацию серной кислоты ведут сернокислым раствором с концентрацией серной кислоты 25-180 г/л, а рафинат возвращают на стадию упаривания.

Известен также способ переработки отработанного медно-никелевого сернокислого раствора (см. авт. свид. СССР N 1668435, кл. С22В 3/20, 1991), включающий электролитическое обезмеживание раствора, двухстадийное упаривание его и охлаждение с последовательной кристаллизацией медного и никелевого купоросов, отделение их от маточного раствора, обогащенного серной кислотой, вымораживание маточного раствора при температуре ниже 273°K и концентрации серной кислоты в растворе, устанавливаемой с учетом температуры вымораживания и суммарной концентрации меди и никеля, отделение сульфата никеля и возврат полученного раствора серной кислоты на электролитическое рафинирование меди.

Наиболее близкий к заявляемому способ переработки медно-никелевого сернокислого раствора (см. авт. свид. СССР N 1447932, кл. С25С 1/12, 1988), включающий упаривание исходного раствора до плотности 1,32-1,37 г/см3, охлаждение его до 5-12°С, кристаллизацию упаренного раствора с получением медного купороса, отделение его от сернокислого раствора, электролитическое обезмеживание раствора при поддержании концентрации меди в растворе 30-60 г/л, упаривание обезмеженного раствора до плотности 1,48-1,50 г/см3, охлаждение до 5-12°С с кристаллизацией никелевого купороса, отделение никелевого купороса от маточного раствора, концентрированного по серной кислоте, и возврат маточного раствора на электролитическое рафинирование меди.

Последний принят в качестве прототипа. Недостатком прототипа является сложность технологии и получение в качестве продукта высокогигроскопичного сульфата никеля загрязненного сульфатами примесных компонентов.

Технической задачей заявляемого технического решения является упрощение технологии и более избирательное извлечение никеля. Названная техническая задача достигается тем, что в способе переработки медно-никелевого сернокислого раствора, включающем кристаллизацию сульфата никеля, перед кристаллизацией раствор обрабатывают аммиачной водой до значения рН в пределах 4-4,5, при температуре, не превышающей 60°С, кристаллизацию сульфата никеля ведут в виде его двойной соли путем изогидрической кристаллизации при охлаждении реакционного объема до 15-25°С с последующим отделением кристаллической массы двойной соли от аморфной фазы сопутствующих компонентов и маточного раствора. Другим отличием является то, что отделение кристаллической массы двойной соли от сопутствующих компонентов осуществляют в восходящем потоке с переменным гидродинамическим режимом, создаваемым маточным раствором при его линейной скорости в пределах 2-8 м/час.

Сущность заявляемого технического решения состоит в том, что при нейтрализации раствора аммиаком в указанных режимах синтезируется двойная соль состава NiSO4(NH4)2SO4*6H2O. Эта соль имеет прямую зависимость растворимости от температуры. При этом растворимость этой соли по никелю при охлаждении до 15-20°С не превышает 3 г/дм3. Для сравнения никелевый купорос при тех же условиях имеет растворимость на порядок выше, а из-за высокого фона кислоты выделяется из раствора в виде крайне гигроскопичной соли, загрязненной сульфатами примесных элементов. Кристаллизация двойной соли обеспечивает высокое избирательное извлечение по никелю, связывает избыток серной кислоты в растворе с одновременной его нейтрализацией. Сопутствующий процесс выпадения гидратных осадков железа, цинка, меди и др. в виде аморфной тонкой фазы имеет значительно худшие характеристики по осветлению маточного раствора по сравнению с двойной солью. Что и является основой для отделения вместе с маточным раствором от кристаллов в режиме декантации. При необходимости качественного отделения гидратных осадков от кристаллов можно использовать фракционирование в восходящем потоке маточного раствора с переменным гидродинамическим режимом при его линейной скорости 2-8 м/час.

Сущность заявляемого технического решения поясняется примерами.

Пример 1. Состав исходного раствора медеэлектролитного производства:

Cu, г/л H2SO4, г/л Ni, г/л Fe, г/л Sb, г/л As, г/л Zn, г/л 1,0-3,0 320-450 35,0-45,0 2,0-3,0 1,0-1,2 3,0-10,0 3,0-6.0

100 мл раствора в конической колбе при постоянном перемешивании обрабатывали 25% аммиачной водой до значения pH раствора 4,5. Процесс обработки сопровождался саморазогревом реакционного объема. После достижения указанного значения реакционный объем охладили при перемешивании до 20°С. Кристаллы характерного сине-зеленого цвета двойной соли выделились одновременно с аморфным осадком гидроксидов.

Пример 2. В 100 мл раствора при постоянном перемешивании влили 50 мл 25% аммиачной воды. После окончания процесса обработки реакционный объем охладили до 20°С. Выделившийся при этом осадок отфильтровали.

Процесс обработки можно описать следующими реакциями:

H2SO4+2NH4OH=(NH4)2SO4+2H2O

NiSO4+(NH4)2SO4+6H2O=NiSO4·(NH4)SO4·6H2O

Теоретически рассчитали выход двойной соли с учетом растворимости соли 30 г/л при 20°С, из раствора объемом 100 мл, содержащего 40 г/л Ni, он составил 22,3 г. На опыте получили выход продукта 24,7 г.Превышение практического выхода над теоретическим можно объяснить загрязнением кристаллов двойной соли аморфным осадком гидроксидов. Теоретически, для раствора состава из примера 1 может образоваться от 1,46 до 3,30 г аморфного осадка из 100 мл раствора.

Пример 3. 1000 мл раствора обрабатывали 25% аммиачной водой до pH 4,5. Полученный объем охладили до 20°С. Охлажденный раствор пропустили через пульсационную колонну со скоростью 7 м/час. В результате получили отмытые кристаллы двойной соли и раствор с аморфным осадком. Раствор отстояли и выделили аморфный осадок. Выход кристаллов двойной соли составил 205,4 г. Массовый состав высушенных кристаллов:

Вещество NiSO4·(NH4)SO4·6H2O Cu Fe Sb As Zn Содержание, % масс. 99,16 0,05 0,10 0,03 0,17 0,19

Выход аморфного осадка составил 45,9 г.

Массовый состав высушенного аморфного осадка:

Вещество NiSO4·(NH4)SO4·6H2O Cu Fe Sb As Zn Содержание %, масс 36,79 5,57 6,71 2,03 15,81 11,87

Пример 4. Шесть проб раствора состава из примера 1 объемом 100 мл обрабатывали различным количеством аммиачной воды 25%. Проба 1 обрабатывалась до pH раствора 3,5. Проба 2 до pH 4. Проба 3 до pH 4,5. Проба 4 до pH 5. Проба 5 до pH 6,0. Проба 6 до pH 8,0. Выход двойной соли для разных проб приведен в таблице 1:

Таблица 1 № пробы Проба 1 Проба 2 Проба 3 Проба 4 Проба 5 Проба 6 Выход двойной соли, г/100 г р-ра 7,9 23,4 23,9 21,6 19,8 17,4

Похожие патенты RU2449033C1

название год авторы номер документа
СПОСОБ ВЫДЕЛЕНИЯ СУЛЬФАТА НИКЕЛЯ 1995
  • Каплун Р.Я.
  • Ивонин В.П.
  • Романова В.В.
  • Хусаинов Ф.Г.
  • Плеханов К.А.
RU2100279C1
СПОСОБ ВЫДЕЛЕНИЯ СУЛЬФАТА МЕДИ 1994
  • Каплун Р.Я.
  • Ивонин В.П.
  • Елкин М.И.
  • Романова В.В.
  • Зимницкий П.В.
  • Зимницкий Б.В.
RU2065402C1
СПОСОБ ПОЛУЧЕНИЯ ЧИСТОГО НИКЕЛЯ СЕРНОКИСЛОГО 1996
  • Вольхин А.И.
  • Гермашев А.С.
  • Евгенов А.М.
  • Макаров Ю.А.
  • Плеханов И.Д.
  • Сидоренко А.Ю.
  • Шабалин В.М.
  • Шарабрин В.В.
  • Шеболаев С.Н.
RU2104949C1
Способ переработки медно-никелевого сернокислого раствора электролитического рафинирования меди 1988
  • Барский Лев Абрамович
  • Марченкова Тамара Григорьевна
  • Таубман Ефим Исаакович
  • Савинкин Валерий Игоревич
  • Яшкин Евгений Иванович
  • Кудряшов Юрий Евгеньевич
SU1668435A1
СПОСОБ ВЫДЕЛЕНИЯ СУЛЬФАТА МЕДИ ИЗ СЕРНОКИСЛОГО РАСТВОРА 1995
  • Каплун Р.Я.
  • Ивонин В.П.
  • Елкин М.И.
  • Романова В.В.
  • Хусаинов Ф.Г.
  • Труфанов В.А.
RU2096330C1
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДА НИКЕЛЯ (II) 2011
  • Низов Василий Александрович
  • Бакиров Альфит Рафитович
  • Катышев Сергей Филиппович
RU2463254C1
СПОСОБ ПЕРЕРАБОТКИ ОКИСЛЕННЫХ НИКЕЛЕВЫХ РУД 2015
  • Рыбкин Сергей Георгиевич
  • Аксёнов Александр Владимирович
  • Сенченко Аркадий Евгеньевич
  • Гринкевич Александр Викентьевич
RU2596510C1
СПОСОБ ПОЛУЧЕНИЯ КОБАЛЬТ (II) СУЛЬФАТА 1998
  • Драпкин К.А.
  • Майоров Д.Ю.
RU2138446C1
СПОСОБ ВОССТАНОВЛЕНИЯ НИКЕЛЯ ИЗ ВОДНОГО РАСТВОРА 2000
  • Хямяляйнен Матти
  • Фуглеберг Сигмунд
  • Кнуутила Кари
RU2237737C2
СПОСОБ ИЗВЛЕЧЕНИЯ КОБАЛЬТА ИЗ КОБАЛЬТСОДЕРЖАЩЕГО МАТЕРИАЛА 1998
  • Семенов А.Н.
  • Кириллова Е.А.
  • Михайлова Л.А.
RU2127326C1

Реферат патента 2012 года СПОСОБ ПЕРЕРАБОТКИ МЕДНО-НИКЕЛЕВОГО СЕРНОКИСЛОГО РАСТВОРА

Изобретение относится к гидрометаллургии меди и никеля и может быть использовано при переработке сернокислых растворов электролитического рафинирования меди, участков гальванической обработки сталей и регенерации отработанных щелочных аккумуляторов. Способ переработки сернокислых медно-никелевых растворов включает кристаллизацию сульфата никеля. При этом перед кристаллизацией раствор обрабатывают аммиачной водой до значения pH в пределах 4-4,5 при температуре, не превышающей 60°С. Кристаллизацию сульфата никеля ведут в виде его двойной соли путем изогидрической кристаллизации при охлаждении до 15-25° реакционного объема с последующим отделением кристаллической массы двойной соли от аморфной фазы сопутствующих компонентов и маточного раствора. Отделение кристаллической массы двойной соли от сопутствующих компонентов осуществляют в восходящем потоке с переменным гидродинамическим режимом, создаваемым маточным раствором при его линейной скорости в пределах 6-8 м/час. Техническим результатом является упрощение технологии и снижение пожароопасности. 1 з.п. ф-лы, 1 табл., 4 пр.

Формула изобретения RU 2 449 033 C1

1. Способ переработки медно-никелевого сернокислого раствора, включающий кристаллизацию сульфата никеля, отличающийся тем, что перед кристаллизацией раствор обрабатывают аммиачной водой до значения pH в пределах 4-4,5 при температуре, не превышающей 60°С, кристаллизацию сульфата никеля ведут в виде его двойной соли путем изогидрической кристаллизации при охлаждении до 15-25° реакционного объема с последующим отделением кристаллической массы двойной соли от аморфной фазы сопутствующих компонентов и маточного раствора.

2. Способ по п.1, отличающийся тем, что отделение кристаллической массы двойной соли от сопутствующих компонентов осуществляют в восходящем потоке с переменным гидродинамическим режимом, создаваемым маточным раствором при его линейной скорости в пределах 6-8 м/ч.

Документы, цитированные в отчете о поиске Патент 2012 года RU2449033C1

Способ переработки раствора электролитического рафинирования меди 1987
  • Яшкин Евгений Иванович
  • Кудряшов Юрий Евгеньевич
  • Бугаева Ангелина Васильевна
  • Лебедев Аркадий Евгеньевич
  • Муравьев Олег Витальевич
  • Гулевич Борис Георгиевич
  • Ладин Николай Алексеевич
  • Ершов Сергей Федорович
SU1447932A1
RU 2070589 C1, 20.12.1996
Способ переработки медно-никелевого сернокислого раствора электролитического рафинирования меди 1988
  • Барский Лев Абрамович
  • Марченкова Тамара Григорьевна
  • Таубман Ефим Исаакович
  • Савинкин Валерий Игоревич
  • Яшкин Евгений Иванович
  • Кудряшов Юрий Евгеньевич
SU1668435A1
СПОСОБ ВЫДЕЛЕНИЯ СУЛЬФАТА НИКЕЛЯ 1995
  • Каплун Р.Я.
  • Ивонин В.П.
  • Романова В.В.
  • Хусаинов Ф.Г.
  • Плеханов К.А.
RU2100279C1
PL 227832 A1, 24.05.1982
Объектив высокой апертуры для микроскопов 1932
  • Максутов Д.Д.
SU40859A1
US 5783057 A, 21.07.1998.

RU 2 449 033 C1

Авторы

Низов Василий Александрович

Мащенко Валентин Николаевич

Бакиров Альфит Рафикович

Даты

2012-04-27Публикация

2010-11-11Подача