СПОСОБ ПОЛУЧЕНИЯ НАНОТРУБОК ОКСИДА ВОЛЬФРАМА Российский патент 2012 года по МПК B22F9/16 B82B3/00 C01G41/02 

Описание патента на изобретение RU2451577C2

Способ относится к порошковой металлургии, к способам получения тугоплавких оксидов, преимущественно к способам получения нанотрубок, и может быть использован для получения наноразмерного карбида вольфрама при последующем замещении кислорода в оксиде вольфрама на углерод.

Известен способ получения нанотрубок оксида вольфрама, который включает смешение кислородсодержащего органического соединения - гидрата щавелевой кислоты с гелем оксида вольфрама. В качестве кислородсодержащего соединения соответствующего металла используют пероксидный оксид молибдена или вольфрама. Технический результат: уменьшение межслоевого расстояния в строении нанотубулярных структур указанных оксидов за счет отсутствия в структуре посторонних радикалов органических соединений [Патент РФ, №2336230].

Однако указанный способ требует использования в качестве исходных материалов ультрадисперсных порошков оксида вольфрама, из которых изготавливается гель. Способ является трудоемким как при подготовке, так и при выделении готовых нанотрубок оксида вольфрама.

Кроме того, известен способ получения оксида вольфрама, являющийся прототипом предлагаемого изобретения и заключающийся в том, что нагрев материала из металла I (Mo, W, V, Zr, Hf, Pt, Re, Nb, Ta, Ti и Ru) с водяным паром или выпаривание электронным лучом упомянутого материала с водой или другим подходящим растворителем, в присутствии соли металла II (NaCl, KCl, LiCl и CsCl), приводит к созданию оксидов металла I с присадкой металла II, а последующее сульфидирование позволяет получить достаточные количества фулереноподобных структур (IF-структур) халькогенидов металла I с интеркалированным и/или заключенным внутри металлом II. Интеркалированные и/или служащие оболочкой IF-структуры образуют стабильные суспензии, например в спирте, а электрофоретическое осаждение из упомянутых суспензий позволяет получить тонкие пленки интеркалированных IF-материалов, которые могут иметь широкий диапазон возможных применений [Патент РФ, №2194807].

Однако указанный способ является технологически сложным, т.к. является длительным и трудоемким и не обеспечивает необходимую чистоту получаемых нанотрубок оксида вольфрама.

Задачей предлагаемого изобретения является повышение чистоты получаемых нанотрубок оксида вольфрама и упрощение технологии получения нанотрубок оксида вольфрама.

Поставленная задача достигается тем, что способ получения нанотрубок оксида вольфрама заключается в приготовлении порошковой смеси, содержащей неорганическое соединение вольфрама и оксида меди. Порошковую смесь исходных материалов размещают на керамическую подложку слоем, толщиной не более 10 мм. Керамическую подложку помещают в вакуумную печь и нагревают, производят выдержку. Затем порошковую смесь остужают и отделяют нанотрубки от побочных продуктов спекания. В качестве исходной порошковой смеси спекают смесь порошков карбида вольфрама, оксида двухвалентной меди и наноразмерной меди, полученной по технологии электровзрыва проводника. Указанный нагрев производят до температуры 600°C с выдержкой при этой температуре не более 30 секунд.

На фиг.1 приведено изображение получаемой нанотрубки оксида вольфрама, а на фиг.2 приведено изображение порошковой смеси после спекания.

Получаемая нанотрубка (фиг.1) содержит 1 - стенку нанотрубки, 2 - полость внутри нанотрубки. На фиг.2 показана получаемая смесь, состоящая из 3 - скопления нанотрубок оксида вольфрама и 4 - частиц металлической меди.

Способ осуществляется следующим образом: исходные порошки карбида вольфрама, оксида двухвалентной меди и наномеди (полученной электровзрывом проводника) перемешивают до однородного состояния любым доступным способом. Затем свободной насыпкой распределяют порошковую смесь на керамическую подложку слоем не более 10 мм толщиной. Это необходимо для свободной циркуляции газов, выделяющихся в результате реакций, проходящих во время спекания. Керамическую подложку помещают в вакуумную камеру, которая обеспечит удаление газообразных продуктов синтеза нанотрубок оксида вольфрама. Порошковую смесь нагревается при вакууме до 600°C с выдержкой 30 секунд. При этой температуре наноразмерная медь выступает в роли катализатора реакции с образованием нанотрубок оксида вольфрама, оксида одновалентной меди и угарного газа. Следующим этапом углекислый газ восстанавливает оксид одновалентной меди до металлической меди и переходит в углекислый газ, который удаляется вакуумной системой. Выдержка необходима для полного протекания химических реакций. При меньшей выдержке образуется недостаточное количество нанотрубок оксида вольфрама. При большей выдержке может произойти оплавление нанотрубок оксида вольфрама. Поскольку медь и соединения вольфрама практически не реагируют друг с другом, металлическая медь выделяется в виде сферических частиц на поверхности нанотрубок оксида вольфрама. А нанотрубки оксида вольфрама остаются чистыми от включений меди (фиг 2).

Предложенный способ позволяет получить чистые нанотрубки оксида вольфрама, т.к. медь и соединения вольфрама практически не реагируют друг с другом. Применение широко используемых и легкодоступных материалов, в качестве исходного сырья, приводит к существенному упрощению технологии получения нанотрубок оксида вольфрама.

Похожие патенты RU2451577C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МИКРОТРУБОК 2013
  • Давутов Руслан Ильфатович
  • Пузанков Дмитрий Алексеевич
  • Вахитов Фаат Хасанович
RU2561380C2
Способ получения нанокомпозиционного материала на основе меди, упрочненного углеродными нановолокнами 2018
  • Толочко Олег Викторович
  • Кольцова Татьяна Сергеевна
  • Ларионова Татьяна Васильевна
  • Бобрынина Елизавета Викторовна
RU2696113C1
СПОСОБ ПРОИЗВОДСТВА КОМПОЗИЦИОННОГО МАТЕРИАЛА С МЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ 2010
  • Буреш,Изабелль
  • Креммер,Вернер
RU2536847C2
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА МЕТАЛЛА 2011
  • Новиков Александр Николаевич
RU2489232C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 1998
  • Ясуо Кондо
  • Юня Канеда
  • Ясухиса Аоно
  • Теруёши Абе
  • Масахиса Инагаки
  • Рюичи Саито
  • Коике
  • Хидео Аракава
RU2216602C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО АРМИРОВАННОГО ПОРОШКОВОГО МАТЕРИАЛА 2014
  • Бобкова Татьяна Игоревна
  • Юрков Максим Анатольевич
  • Черныш Алексей Александрович
  • Елисеев Александр Андреевич
  • Деев Артем Андреевич
  • Климов Владимир Николаевич
  • Самоделкин Евгений Александрович
RU2573309C1
Шихта для гибридного композиционного материала и способ его получения 2016
  • Савченко Николай Леонидович
  • Саблина Татьяна Юрьевна
  • Севостьянова Ирина Николаевна
  • Григорьев Михаил Владимирович
  • Кульков Сергей Николаевич
  • Буякова Светлана Петровна
RU2620221C1
Способ получения композиционного порошка системы алюминий - цинк для нанесения покрытия методом холодного газодинамического напыления 2023
  • Козлов Илья Андреевич
  • Фомина Марина Александровна
  • Демин Семен Анатольевич
  • Васильев Алексей Сергеевич
RU2820258C1
Гетеромодульный керамический композиционный материал и способ его получения 2019
  • Кульков Сергей Николаевич
  • Буякова Светлана Петровна
  • Бурлаченко Александр Геннадьевич
  • Мировой Юрий Александрович
  • Дедова Елена Сергеевна
RU2725329C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ СПЛАВОВ СИСТЕМЫ Sn-Sb-Cu И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2014
  • Калашников Игорь Евгеньевич
  • Болотова Людмила Константиновна
  • Кобелева Любовь Ивановна
  • Катин Игорь Валентинович
  • Быков Павел Андреевич
  • Колмаков Алексей Георгиевич
  • Михеев Роман Сергеевич
  • Коберник Николай Владимирович
RU2585588C1

Иллюстрации к изобретению RU 2 451 577 C2

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ НАНОТРУБОК ОКСИДА ВОЛЬФРАМА

Изобретение относится к порошковой металлургии, а именно к способу получения нанотрубок оксида вольфрама, и может быть использовано при производстве твердых сплавов. Технический результат - упрощение технологии, повышение чистоты нанотрубок. Согласно способу приготавливают порошковую смесь, содержащую порошки карбида вольфрама, оксида двухвалетной меди и наноразмерной меди, полученной по технологии электровзрыва проводника. Порошковую смесь размещают на керамическую подложку слоем, толщиной не более 10 мм. Затем керамическую подложку помещают в вакуумную печь и нагревают до температуры 600°C с выдержкой при этой температуре не более 30 секунд. После чего порошковую смесь остужают и отделяют нанотрубки от побочных продуктов спекания. 2 ил.

Формула изобретения RU 2 451 577 C2

Способ получения нанотрубок оксида вольфрама, включающий приготовление исходной порошковой смеси, содержащей неорганическое соединение вольфрама и оксид меди, размещение порошковой смеси исходных материалов на керамической подложке слоем толщиной не более 10 мм, при этом керамическую подложку помещают в вакуумную печь и нагревают, производят выдержку, затем порошковую смесь остужают и отделяют нанотрубки от побочных продуктов спекания, отличающийся тем, что в качестве исходной порошковой смеси спекают смесь порошков карбида вольфрама, оксида двухвалентной меди и наноразмерной меди, полученной по технологии электровзрыва проводника, указанный нагрев производят до температуры 600°C с выдержкой при этой температуре не более 30 с.

Документы, цитированные в отчете о поиске Патент 2012 года RU2451577C2

СПОСОБ ИЗГОТОВЛЕНИЯ НАНОЧАСТИЦ ИЛИ НИТЕВИДНЫХ НАНОКРИСТАЛЛОВ, СПОСОБ ИЗГОТОВЛЕНИЯ НЕОРГАНИЧЕСКИХ ФУЛЛЕРЕНОПОДОБНЫХ СТРУКТУР ХАЛЬКОГЕНИДА МЕТАЛЛА, НЕОРГАНИЧЕСКИЕ ФУЛЛЕРЕНОПОДОБНЫЕ СТРУКТУРЫ ХАЛЬКОГЕНИДА МЕТАЛЛА, СТАБИЛЬНАЯ СУСПЕНЗИЯ IF-СТРУКТУР ХАЛЬКОГЕНИДА МЕТАЛЛА, СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКИХ ПЛЕНОК ИЗ IF-СТРУКТУР ХАЛЬКОГЕНИДА МЕТАЛЛА И ТОНКАЯ ПЛЕНКА, ПОЛУЧЕННАЯ ТАКИМ СПОСОБОМ, И НАСАДКА ДЛЯ РАСТРОВОГО МИКРОСКОПА 1997
  • Хомионфер Моше
  • Тенне Решеф
  • Фельдман Йишай
RU2194807C2
СПОСОБ ПОЛУЧЕНИЯ НАНОТУБУЛЯРНЫХ СТРУКТУР ОКСИДОВ ПОДГРУППЫ ВАНАДИЯ ИЛИ ХРОМА (ВАРИАНТЫ) 2006
  • Волков Виктор Львович
  • Захарова Галина Степановна
  • Волкова Елена Георгиевна
  • Чен Вен
  • Джу Цюаньяо
RU2336230C2
Способ сушки электрических аппаратов (машин, трансформаторов и т.п.) 1946
  • Сыркин М.Е.
SU67536A1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1

RU 2 451 577 C2

Авторы

Батаев Анатолий Андреевич

Батаев Владимир Андреевич

Буров Владимир Григорьевич

Уваров Николай Фавстович

Дробяз Алексей Андреевич

Терентьев Дмитрий Сергеевич

Огнев Александр Юрьевич

Дробяз Екатерина Александровна

Теплых Александр Михайлович

Батаев Иван Анатольевич

Головин Евгений Дмитриевич

Никулина Аэлита Александровна

Даты

2012-05-27Публикация

2010-08-03Подача