Изобретение относится к области получения стеклянных и стеклометаллических микрошариков и может быть использовано в технике, биотехнологии, электронике, а также в ювелирном деле.
Известен способ получения стеклянных микрошариков ⌀ 5-500 мкм путем оплавления предварительно измельченного стекла [1]. Также известен способ получения стеклянных микрошариков ⌀ 500-1500 мкм из расплава путем диспергации в газовом потоке с последующим охлаждением и улавливанием [1].
Однако, несмотря на неплохое качество продукта, данные способы имеют следующие недостатки: длительность процесса измельчения и последующего рассева; энергоемкая технологическая стадия получения расплава и сложность аппаратурного оформления, предназначенного для диспергации и улавливания конечного продукта.
Наиболее близким техническим решением является способ получения стекломикрошариков, заключающийся в смешении компонентов шихты, формовании стержней, их плазменном распылении и улавливании [2].
Недостатком данного способа является длительность технологического процесса, заключающегося в смешивании компонентов шихты в шаровой мельнице с последующим высушиванием, значительная энергоемкость процесса получения микрошариков и низкая производительность.
Преимуществом предлагаемого способа является ускорение процесса получения стекломикрошариков, снижение энергоемкости, а также возможность получения стеклометаллических микрошариков.
Поставленная цель достигается тем, что в предлагаемом способе используются стержни на основе металлической проволоки, покрытой пастой, состоящей из молотого стекла и связующего. При этом плазменное распыление производится при мощности работы плазмотрона 9 кВт, а стержни вводятся в плазменную горелку со скоростью 8-12 мм/сек.
Отличительным признаком предлагаемого способа является увеличение скорости ввода стержней в плазменную горелку, снижение мощности работы плазмотрона до 9 кВт и возможность получения нового композиционного материала - стеклометаллических микрошариков.
Таким образом, основным отличительным признаком является использование стержней на основе металлической проволоки, покрытой слоем измельченного стекла.
Изобретательский уровень подтверждается тем, что изменение состава стержней для плазменного напыления позволяет получить стеклометаллические микрошарики, снизить энергозатраты и повысить скорость ввода стержней в плазменную горелку.
Проведенный анализ известных способов получения микрошариков позволяет сделать заключение о соответствии заявленного изобретения критерию «новизна».
Сопоставительный анализ технологических операций известного и предлагаемого способов позволил определить новизну последнего.
Так, в известном способе необходима длительная во времени операция смешивания исходных компонентов в шаровой мельнице. В предлагаемом способе данная технологическая операция отсутствует. Одним из отличительных признаков предлагаемого способа являются принципиально новые технологические операции помола исходного стекла в шаровой мельнице и нанесение пасты на поверхность металлической проволоки (таблица 1).
Технологические параметры известного и предлагаемого способов представлены в таблице 2. Отличительными признаками предлагаемого способа являются мощность работы плазмотрона 9 кВт и скорость ввода стержней в плазменную горелку 8-12 мм/с.
В предлагаемом способе определены оптимальные технологические параметры получения стекломикрошариков.
При вводе в плазменную горелку стержней на основе металлической проволоки и пасты из молотого стекла и связующего происходит интенсивное плавление композита, смешивание расплавленных частичек металла со стеклом и образование стеклометаллических шариков диаметром 300-1100 мкм. В предлагаемом способе определены оптимальные технологические параметры получения стеклометаллических микрошариков. Интенсивное плавление стержней и образование стеклометаллических микрошариков происходит при скорости их ввода в плазменную горелку 8-12 мм/с и мощности работы плазмотрона 9 кВт (таблица 3).
Пример. Получение стеклометаллических микрошариков из меди и синего кобальтового стекла
Для получения стеклометаллических микрошариков использовали медную проволоку диаметром 1,0 мм и синее кобальтовое стекло.
Предварительно синее кобальтовое стекло мололи в шаровой мельнице с последующим рассевом на фракции 50-100 мкм. Пластическую пасту готовили методом смешивания стеклопорошка со связующей добавкой, которой служил клей ПВА. Соотношение стеклопорошка и связующей добавки составляло 10:1. Медная проволока разрезалась на прутки 300 мм и методом пластического формования проволока заформовывалась в пасту на основе стеклопорошка и связующего.
После сушки стержни вводили в плазменную горелку ГН - 5Р электродугового плазмотрона УПУ - 8М. Оптимальная скорость ввода стержней в плазменную горелку составляла 8-12 мм/с.Мощность работы плазмотрона составляла 9 кВт/час. Плазмообразующим газом служил аргон, расход которого составлял 0,0014 кг/с при давлении 0,27-0,29 МПа.
В процессе распыления в плазменной горелке образовывались стеклометаллические микрошарики ⌀0,3-1,1 мм.
Стеклометаллические микрошарики как композиционный материал получен впервые и не имеет аналогов в мировой практике.
Литература
1. Будов В.М., Егорова Л.С. Стеклянные микрошарики. Применение, свойства, технология. // Стекло и керамика. - 1993, №7. с.2-5.
2. Крохин В.П., Бессмертный B.C., Пучка О.В., Никифиров В.М. Синтез алюмоиттриевых стекол и минералов. // Стекло и керамика. - 1997, №9, с.6-7.
название | год | авторы | номер документа |
---|---|---|---|
СТЕКЛОМЕТАЛЛИЧЕСКИЕ МИКРОШАРИКИ И ИХ СПОСОБ ПОЛУЧЕНИЯ | 2013 |
|
RU2532784C2 |
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛОМЕТАЛЛИЧЕСКИХ МИКРОШАРИКОВ | 2022 |
|
RU2788194C1 |
СПОСОБ ПОЛУЧЕНИЯ СТЕРЖНЕЙ ДЛЯ ПОЛУЧЕНИЯ СТЕКЛОМЕТАЛЛИЧЕСКИХ МИКРОШАРИКОВ | 2014 |
|
RU2565296C1 |
СТЕКЛОМЕТАЛЛИЧЕСКОЕ ДЕКОРАТИВНОЕ ПОКРЫТИЕ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2003 |
|
RU2251538C2 |
ШИХТА ДЛЯ ПОЛУЧЕНИЯ СТЕКЛОМЕТАЛЛИЧЕСКИХ МИКРОШАРИКОВ | 2022 |
|
RU2798526C1 |
Состав шихты для получения стеклометаллических микрошариков | 2023 |
|
RU2805240C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ЗАЩИТНО-ДЕКОРАТИВНЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯХ ИЗ БЕТОНА | 2015 |
|
RU2595024C1 |
СПОСОБ ПОЛУЧЕНИЯ ЗАКАЛЕННЫХ СТЕКЛОМИКРОШАРИКОВ | 2020 |
|
RU2744044C1 |
СПОСОБ ПОЛУЧЕНИЯ СТЕКЛОМИКРОШАРИКОВ | 2023 |
|
RU2808392C1 |
СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКИХ МИКРОШАРИКОВ | 2023 |
|
RU2824619C1 |
Изобретение относится к получению композиционных материалов, а именно стеклометаллических микрошариков, которые могут быть использованы в технике, биотехнологии, электронике и в ювелирном деле. Заявленный способ включает приготовление стержней, их плазменное распыление и улавливание образовавшихся стеклометаллических микрошариков. При этом используют стержни, состоящие из металлической проволоки, покрытой пастой на основе измельченного стекла и связующего. Плазменное распыление производят при мощности работы плазмотрона 9 кВт и скорости ввода стержней в плазменную горелку 8-12 мм/с. Технический результат - повышение производительности и энергоемкости процесса. 3 табл.
Способ получения микрошариков, включающий приготовление стержней, их плазменное распыление и улавливание образовавшихся микрошариков, отличающийся тем, что используют стержни, состоящие из металлической проволоки, покрытой пастой на основе измельченного стекла и связующего, а плазменное распыление с последующим улавливанием стеклометаллических микрошариков производят при мощности работы плазмотрона 9 кВт и скорости ввода стержней в плазменную горелку 8-12 мм/с.
Крохин В.П | |||
и др | |||
Синтез алюмоитриевых стекол и минералов // Стекло и керамика, 1997, №9, с.6, 7 | |||
СФЕРОИДИЗИРОВАННЫЙ ПЛАЗМОЙ КЕРАМИЧЕСКИЙ ПОРОШОК | 2003 |
|
RU2299926C2 |
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛОВ В ДИСПЕРСНОМ СОСТОЯНИИ С КЛАСТЕРНОЙ СТРУКТУРОЙ ЧАСТИЦ | 1992 |
|
RU2021851C1 |
Колосоуборка | 1923 |
|
SU2009A1 |
US 20090184281 А1, 23.07.2009. |
Авторы
Даты
2012-07-10—Публикация
2010-05-24—Подача