АЗОТСОДЕРЖАЩАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ ИЗГОТОВЛЕНИЯ НЕФТЕГАЗОПРОВОДНЫХ ТРУБ Российский патент 2012 года по МПК C22C38/26 

Описание патента на изобретение RU2460822C1

Изобретение относится к области металлургии, в частности к легированным сталям, предназначенным для изготовления нефтегазопроводных труб и другого оборудования для нефтяной промышленности, обладающих необходимыми механическими свойствами и коррозионной стойкостью в агрессивных средах, содержащих сероводород и углекислый газ.

Известна сталь, предназначенная для изготовления магистральных труб для перекачки нефтепродуктов в условиях северных широт, содержащая, мас.%: углерод 0,06-0,13, марганец 0,3-0,7, кремний 0,15-0,40, хром 0,40-0,70, молибден 0,08-0,15, церий 0,002-0,05, алюминий 0,01-0,07, железо - остальное (патент РФ №2122045, МПК C22C 38/28). Данная сталь не является коррозионно-стойкой к углекислотной коррозии и не обеспечивает необходимую стойкость к сульфидному коррозионному растрескиванию под напряжением и биокоррозии.

Известна также сталь для изготовления нефте-, газо- и продуктопроводов, морских платформ, сварных конструкций, описанная в патенте РФ №2241780, МПК C22C 38/60 и характеризующаяся следующим составом, мас.%:

углерод 0,02-0.11 кремний 0,06-0,60 марганец 0,10-1,80 хром 0,005-0,30 никель 0,005-1,00 ванадий 0,01-0,12 ниобий 0,02-0,10 титан 0,01-0,04 фосфор 0,001-0,012 азот 0,001-0,012 медь 0.005-0,25 сурьма 0,0001-0,008 мышьяк 0,0001-0,008 олово 0,0001-0,007 железо остальное

Указанная сталь обладает достаточно высокими прочностными характеристиками и высокой вязкостью при отрицательных температурах, однако не является коррозионно-стойкой к углекислотной и бактериальной коррозии.

Наиболее близкой по совокупности существенных признаков к заявляемому изобретению является коррозионно-стойкая сталь для нефтепродуктопроводов (патент РФ №2361958, МПК C22C 38/00), характеризующаяся следующим содержанием ингредиентов, мас.%:

углерод 0,03-0,12 марганец 0,40-0,70 кремний 0,17-0,40 хром 0,50-1,20 ванадий 0,04-0,10 ниобий 0,03-0,06 молибден 0,15-0,30 алюминий не более 0,06 РЗМ 0,002-0,01 железо и неизбежные примеси остальное

Описанная сталь имеет высокую коррозионную стойкость в сероводородсодержащей среде, но низкие прочностные, вязко-пластические характеристики и недостаточный уровень коррозионной стойкости в CO2-содержащих средах.

Задачей настоящего изобретения является создание стали для нефтегазопроводных труб, обладающих необходимыми прочностными характеристиками, хорошей свариваемостью, повышенной стойкостью к углекислотной, сероводородной, бактериальной коррозии и пригодных для эксплуатации в условиях Крайнего Севера.

Поставленная задача решается путем того, что сталь, содержащая углерод, марганец, кремний, хром, ванадий, ниобий, молибден, алюминий, РЗМ, железо и неизбежные примеси, в отличие от прототипа дополнительно содержит азот при следующем соотношении ингредиентов, мас.%:

углерод не более 0.05 марганец не более 0,60 кремний не более 0,60 хром 1,50-3,00 ванадий 0,06-0,12 ниобий 0,06-0,12 молибден 0,20-0,40 алюминий 0,025-0,40 РЗМ не более 0,05 азот 0,10-0,30 железо и неизбежные примеси остальное

Технический результат, получаемый при осуществлении заявляемого изобретения, заключается в том, что легирование стали азотом в указанном количестве в совокупности с нитридообразующими элементами (ванадий, ниобий и алюминий) обеспечивает получение необходимых прочностных и вязко-пластических характеристик при высокой стойкости к сульфидной, углекислотной и бактериальной коррозии. Нитридные выделения используются в качестве дисперсных упрочнителей аналогично карбидным в сталях с более высоким содержанием углерода. За счет того, что атомный радиус азота меньше атомного радиуса углерода, азот имеет большее сродство с твердым раствором, чем углерод. Это позволяет создать равномерно распределенные по структуре выделения. Нитриды в отличие от карбидов не склонны к коагуляции. Поэтому нитриды легирующих элементов сдерживают рост аустенитного зерна и повышение прочности возможно не только по дисперсионному механизму упрочнения, но и по зернограничному. Также, согласно уравнению Петтча-Холла, чем меньше размер зерна, тем больше предел текучести.

Содержание в химическом составе стали азота менее 0,10 мас.% не обеспечивает эффект повышения прочности за счет образования нитридов или карбонитридов легирующих элементов. Ограничение содержания азота до 0,30 мас.% обусловлено ограниченной растворимостью азота в железе. Наличие в химическом составе стали углерода не более 0,05 мас.% необходимо для получения стали с необходимым уровнем свариваемости. При содержании углерода более 0,05 мас.% снижаются вязко-пластические и коррозионные свойства стали за счет формирования в структуре стали карбидов хрома.

За счет введения в состав стали нитридо- и карбонитридообразующих элементов (ниобий и ванадий) в структуре предлагаемой стали уменьшается количество выделений, содержащих молибден и хром, вследствие чего повышается количество хрома и молибдена в твердом растворе, что оказывает положительное влияние на стойкость к углекислотной коррозии, поскольку хром и молибден склонны к образованию на поверхности стали защитных аморфных фаз, повышающих коррозионную стойкость. При содержании хрома в стали менее 1,5 мас.% не обеспечивается стойкость труб к углекислотной коррозии, а при содержании хрома свыше 3,0 мас.% ухудшается стойкость труб к сульфидному коррозионному растрескиванию под напряжением (СКРН). Трубы, изготовленные из стали с содержанием молибдена менее 0,2 мас.%, не обладают хладостойкостью, а при содержании молибдена свыше 0,4 мас.% снижается стойкость труб к СКРН.

При содержании ванадия свыше 0,12 мас.% наблюдается значительное ухудшение свариваемости, а содержание ниобия свыше 0,12 мас.% приводит к появлению грубых карбонитридов, что негативно сказывается на стойкости стали к коррозионному растрескиванию. Введение ванадия и ниобия менее 0,06 мас.% не обеспечит формирования в структуре стали карбонитридов ванадия и ниобия, необходимых для повышения стойкости к углекислотной коррозии.

Введение редкоземельных металлов положительно сказывается на стойкости стали к сульфидной коррозии, т.к. они связывают серу в оксисульфиды и гидриды. Содержание РЗМ выше 0,05 мас.% может привести к излишнему обогащению границ зерен РЗМ, что вызовет склонность стали к межзеренному разрушению и, следовательно, приведет к уменьшению вязкости, повышению температуры хрупко-вязкого перехода и снижению стойкости к СКРН.

Введение алюминия в указанном количестве достаточно для связывания растворенного кислорода в прочные оксиды. При введении алюминия больше 0,40 мас.% возможно формирование в границах кристаллов нитридов алюминия пленистых форм, охрупчивающих сталь. При содержании алюминия менее 0,025 мас.% сталь не будет являться раскисленной.

Сущность предложенного изобретения и обеспечиваемый им технический результат поясняются данными проведенных исследований, представленными в таблицах, где в Таблице 1 приведены варианты химического состава стали, в Таблице 2 - механические свойства, в Таблице 3 - результаты коррозионных испытаний.

Таблица 1 Массовые доли элементов, % Рсм, % C Si Mn Cr Mo Al V Nb РЗМ N 1 0.03 0.2 0.5 3.0 0.30 0.025 0.06 0.08 0.04 0.1 0.24 2 0.04 0.5 0.6 2.6 0.25 0.08 0.1 0.12 0.02 0.2 0.24 3 0.03 0.6 0.2 1.8 0.30 0.40 0.08 0.1 0.04 0.15 0.18 4 0.02 0.2 0.5 1.5 0.40 0.10 0.11 0.09 0.02 0.3 0.16 5 0.04 0.6 0.6 2.3 0.20 0.05 0.12 0.07 0.05 0.1 0.23 6 0.05 0.4 0.3 2.9 0.40 0.20 0.07 0.06 0.03 0.25 0.26 7 0.04 0.3 0.4 2.1 0.35 0.30 0.09 0.11 0.05 0.2 0.21

Таблица 3 Стойкость к СКРН по NACE TMO177, метод А, σth, % Скорость коррозии в CO2-содержащей среде, мм/год Количество клеток СВБ бактерий в поле зрения при x3000 1 80 0,15 8 2 85 0,20 14 3 85 0,28 12 4 85 0,32 15 5 85 0,26 11 6 85 0,15 9 7 85 0,30 10

Как видно из приведенных данных, совокупность качественного и количественного соотношения ингредиентов предложенного состава стали обеспечивает необходимый уровень прочностных характеристик, свариваемости, хладостойкости, стойкости к углекислотной, сульфидной, а также и к бактериальной коррозии изготовленных из нее труб и оборудования для нефтяной промышленности.

Похожие патенты RU2460822C1

название год авторы номер документа
СТАЛЬ 2007
  • Луценко Андрей Николаевич
  • Немтинов Александр Анатольевич
  • Голованов Александр Васильевич
  • Ефимов Семен Викторович
  • Филатов Николай Владимирович
  • Хорева Анна Александровна
  • Мальцев Андрей Борисович
  • Рослякова Наталья Евгеньевна
  • Князькин Сергей Александрович
  • Ревякин Виктор Анатольевич
  • Иоффе Андрей Владиславович
  • Тетюева Тамара Викторовна
  • Денисова Татьяна Владимировна
RU2361958C2
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НАСОСНО-КОМПРЕССОРНЫХ И ОБСАДНЫХ ТРУБ 2009
  • Денисова Татьяна Владимировна
  • Иоффе Андрей Владиславович
  • Ревякин Виктор Анатольевич
  • Тазетдинов Валентин Иреклеевич
  • Тетюева Тамара Викторовна
  • Трифонова Елена Александровна
  • Фазылов Шамиль Сайнуллович
  • Юдин Павел Евгеньевич
RU2414521C1
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НЕФТЕГАЗОДОБЫВАЮЩЕГО ОБОРУДОВАНИЯ 2010
  • Чикалов Сергей Геннадьевич
  • Тазетдинов Валентин Иреклеевич
  • Ладыгин Сергей Александрович
  • Александров Сергей Владимирович
  • Прилуков Сергей Борисович
  • Белокозович Юрий Борисович
  • Медведев Александр Павлович
  • Ярославцева Оксана Владимировна
RU2437954C1
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НАСОСНО-КОМПРЕССОРНЫХ И ОБСАДНЫХ ТРУБ 2008
  • Денисова Татьяна Владимировна
  • Иоффе Андрей Владиславович
  • Ревякин Виктор Анатольевич
  • Тетюева Тамара Викторовна
  • Титлова Ольга Ивановна
  • Трифонова Елена Александровна
  • Марков Дмитрий Всеволодович
  • Медведев Александр Павлович
  • Прилуков Сергей Борисович
  • Ладыгин Сергей Александрович
  • Белокозович Юрий Борисович
  • Александров Сергей Владимирович
RU2371508C1
Высокопрочная коррозионно-стойкая бесшовная труба из нефтепромыслового сортамента и способ ее получения 2019
  • Александров Сергей Владимирович
  • Лаев Константин Анатольевич
  • Щербаков Игорь Викторович
  • Девятерикова Наталья Анатольевна
  • Ошурков Георгий Леонидович
  • Харлашин Александр Николаевич
RU2719212C1
СПОСОБ ПРОИЗВОДСТВА НИЗКОЛЕГИРОВАННОГО ХЛАДОСТОЙКОГО СВАРИВАЕМОГО ЛИСТОВОГО ПРОКАТА ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ 2014
  • Попова Анна Александровна
  • Шеремет Наталия Павловна
  • Сафронова Наталья Николаевна
  • Новоселов Сергей Иванович
RU2569619C1
СТАЛЬ ДЛЯ МАГИСТРАЛЬНЫХ НЕФТЕ- И ГАЗОПРОВОДОВ 2001
  • Степанов А.А.
  • Ламухин А.М.
  • Зинченко С.Д.
  • Дьяконова В.С.
  • Голованов А.В.
  • Гуркин М.А.
  • Рослякова Н.Е.
  • Чикалов С.Г.
  • Комаров А.И.
  • Седых А.М.
  • Степанцов Э.В.
  • Роньжин А.И.
  • Шишов А.А.
  • Тетюева Т.В.
  • Зикеев В.Н.
  • Клыпин Б.А.
RU2180016C1
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ НАСОСНО-КОМПРЕССОРНЫХ И ОБСАДНЫХ ТРУБ И НЕФТЕГАЗОДОБЫВАЮЩЕГО ОБОРУДОВАНИЯ 2010
  • Чикалов Сергей Геннадьевич
  • Тазетдинов Валентин Иреклеевич
  • Ладыгин Сергей Александрович
  • Александров Сергей Владимирович
  • Прилуков Сергей Борисович
  • Белокозович Юрий Борисович
  • Медведев Александр Павлович
  • Ярославцева Оксана Владимировна
RU2437955C1
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ БЕСШОВНЫХ ГОРЯЧЕКАТАНЫХ НАСОСНО-КОМПРЕССОРНЫХ И ОБСАДНЫХ ТРУБ ПОВЫШЕННОЙ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ И ТРУБЫ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ 2015
  • Клачков Александр Анатольевич
  • Пышминцев Игорь Юрьевич
  • Лубе Иван Игоревич
  • Тихонцева Надежда Тахировна
  • Битюков Сергей Михайлович
  • Костицына Ирина Валерьевна
  • Жукова Светлана Юльевна
  • Ануфриев Николай Петрович
  • Лаев Константин Анатольевич
  • Софрыгина Ольга Андреевна
  • Корчагина Ирина Викторовна
RU2594769C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2011
  • Дегтярев Александр Федорович
  • Назаратин Владимир Васильевич
  • Егорова Марина Александровна
  • Горбач Владимир Дмитриевич
  • Завьялов Юрий Николаевич
RU2454478C1

Реферат патента 2012 года АЗОТСОДЕРЖАЩАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ ИЗГОТОВЛЕНИЯ НЕФТЕГАЗОПРОВОДНЫХ ТРУБ

Изобретение относится к области металлургии, а именно к легированным сталям, предназначенным для изготовления нефтегазопроводных труб и другого оборудования для нефтяной промышленности. Сталь содержит следующие ингредиенты, в мас.%: углерод не более 0,05, марганец не более 0,60, кремний не более 0,60, хром 1,50-3,00, ванадий 0,06-012, ниобий 0,06-0,12, молибден 0,20-0,40, алюминий 0,025-0,40, РЗМ не более 0,05, азот 0,10-0,30, железо и неизбежные примеси остальное. Обеспечивается получение необходимых прочностных и вязкопластических характеристик при высокой стойкости к сульфидной, углекислотной и бактериальной коррозии. 3 табл.

Формула изобретения RU 2 460 822 C1

Азотсодержащая коррозионно-стойкая сталь для изготовления нефтегазопроводных труб, содержащая углерод, марганец, кремний, хром, ванадий, ниобий, молибден, алюминий, РЗМ, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит азот при следующем соотношении ингредиентов, мас.%:
углерод не более 0,05 марганец не более 0,60 кремний не более 0,60 хром 1,50-3,00 ванадий 0,06-0,12 ниобий 0,06-0,12 молибден 0,20-0,40 алюминий 0,025-0,40 РЗМ не более 0,05 азот 0,10-0,30 железо и неизбежные примеси остальное

Документы, цитированные в отчете о поиске Патент 2012 года RU2460822C1

СТАЛЬ 2007
  • Луценко Андрей Николаевич
  • Немтинов Александр Анатольевич
  • Голованов Александр Васильевич
  • Ефимов Семен Викторович
  • Филатов Николай Владимирович
  • Хорева Анна Александровна
  • Мальцев Андрей Борисович
  • Рослякова Наталья Евгеньевна
  • Князькин Сергей Александрович
  • Ревякин Виктор Анатольевич
  • Иоффе Андрей Владиславович
  • Тетюева Тамара Викторовна
  • Денисова Татьяна Владимировна
RU2361958C2
ТРУБА ДЛЯ НЕФТЕГАЗОПРОДУКТОПРОВОДОВ И СПОСОБ ЕЕ ПРОИЗВОДСТВА 2000
  • Дуб В.С.
  • Лобода А.С.
  • Головин С.В.
  • Болотов А.С.
  • Тарлинский В.Д.
  • Дуб А.В.
  • Комаров А.И.
  • Чикалов С.Г.
  • Романцов И.А.
  • Роньжин А.И.
  • Ламухин А.М.
  • Марков С.И.
  • Дементьев А.В.
  • Тахаутдинов Р.С.
RU2180691C1
СТАЛЬ ДЛЯ МАГИСТРАЛЬНЫХ НЕФТЕ- И ГАЗОПРОВОДОВ 2001
  • Степанов А.А.
  • Ламухин А.М.
  • Зинченко С.Д.
  • Дьяконова В.С.
  • Голованов А.В.
  • Гуркин М.А.
  • Рослякова Н.Е.
  • Чикалов С.Г.
  • Комаров А.И.
  • Седых А.М.
  • Степанцов Э.В.
  • Роньжин А.И.
  • Шишов А.А.
  • Тетюева Т.В.
  • Зикеев В.Н.
  • Клыпин Б.А.
RU2180016C1
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
Перекатываемый затвор для водоемов 1922
  • Гебель В.Г.
SU2001A1
Способ крашения тканей 1922
  • Костин И.Д.
SU62A1

RU 2 460 822 C1

Авторы

Иоффе Андрей Владиславович

Тетюева Тамара Викторовна

Ревякин Виктор Анатольевич

Трифонова Елена Александровна

Мовчан Михаил Александрович

Даты

2012-09-10Публикация

2011-06-20Подача