ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ МОНОКРИСТАЛЛИЧЕСКОГО ЛИТЬЯ Российский патент 2012 года по МПК C22C19/05 

Описание патента на изобретение RU2465359C1

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе никеля, предназначенным для производства методом направленной кристаллизации деталей высокотемпературных газовых турбин ГТД и ГТУ, преимущественно монокристаллических рабочих, сопловых лопаток и других элементов горячего тракта турбины, длительно работающих при температурах, превышающих 1000°С.

Известен жаропрочный сплав на основе никеля для монокристаллического литья следующего химического состава, мас.%:

Углерод 0,05-0,12 Хром 5,0-6,0 Кобальт 8,0-10,0 Вольфрам 6,5-7,5 Молибден 0,8-1,5 Ниобий 0,6-1,0 Алюминий 5,5-6,0 Тантал 4,4-5,4 Рений 3,8-4,6 Бор 0,001-0,02 Ниобий 0,6-1,0 Церий 0,005-0,1 Иттрий 0,0001-0,002 Лантан 0,001-0,05 Недоим 0,0005-0,01 Никель остальное

При соблюдении условия

9,5≤(1/2W+1/2Re+1/2Ta+Mo+Nb)≤10,5 (Патент РФ №2148099).

По уровню характеристик жаропрочности он превосходит известные сплавы для лопаток с направленной структурой как отечественные ЖС26, ЖС30, так и зарубежные MarM200, MarM246 и другие сплавы. Высокий уровень прочностных характеристик сплава определяется его легированием рением. Однако сплав не является фазовостабильным. При содержании в сплаве рения на уровне 4-4,3% и вольфрама на уровне 8,5-9% в сплаве при высоких температурах происходит образование пластинчатых выделений топологически плотно упакованных фаз. Топологически плотно упакованные (ТПУ), содержащие рений фазы охрупчивают и разупрочняют сплав; результатом фазовых превращений является высокая дисперсия и снижение характеристик длительной прочности сплава. Выделения такого типа в сплаве могут образовываться так же после термической обработки и технологических нагревов при изготовлении деталей, что требует дополнительного контроля и значительно увеличивает брак деталей.

Известен жаропрочный никелевый сплав следующего химического состава, мас.%:

Хром 6,4-6,8 Кобальт 9,3-10,0 Вольфрам 6,2-6,6 Молибден 0,5-0,7 Титан 0,8-1,2 Алюминий 5,45-5,75 Тантал 6,3-6,7 Рений 2,8-3,2 Гафний 0,07-0,12 Углерод 0,01-0,08 Никель основа

(Патент США №5 549765).

Сплав предназначен для литья лопаток с монокристаллической структурой, имеющих кристаллографическую ориентацию [001]; в этой ориентации сплав имеет высокий уровень жаропрочности. Сплав нашел широкое применение для литья рабочих и сопловых охлаждаемых монокристаллических лопаток современных ГТД. Однако отмечается его недостаточно высокая технологичность при монокристаллическом литье, то есть выход годного литья по структуре. Кроме этого данный сплав имеет низкие значения длительной прочности в ориентации [111], что ограничивает возможности его применения.

Наиболее близким к предлагаемому техническому решению и принятым за прототип является сплав следующего химического состава, мас.%:

Хром 4,0-6,0 Кобальт 8,0-10,0 Вольфрам 6,5-8,0 Молибден 0,8-2,2 Титан 0,1-1,0 Алюминий 5,4-6,2 Тантал 4,0-7,0 Рений 2,7-3,7 Ниобий 0,1-1,0 Бор 0,001-0,02 Церий 0,015-0,05 Иттрий 0,001-0,002 Кислород 0,0003-0,001 Азот 0,0003-0,001 Углерод 0,001-0,04 Никель остальное

(Патент РФ №2318030).

Сплав предназначается для литья лопаток ГТД с направленной и монокристаллической структурами, длительно работающими при высоких температурах. Сплав имеет недостаточно высокий уровень жаропрочности при температурах, превышающих 1000°С. Сплав не обладает высокой фазовой стабильностью при длительном воздействии температур и напряжений. При содержании W и Re в заявленном соотношении в сплаве отмечается образование ТПУ фаз, приводящих к снижению характеристик длительной прочности (жаропрочности), что наряду с недостаточно высоким сопротивление коррозии ограничивает применение изделий из этого сплава по рабочей температуре и климатическим условиям.

Технической задачей изобретения является разработка жаропрочного сплава на основе никеля для монокристаллического литья отливок деталей ГТД и ГТУ с рабочей температурой, превышающей 1000°С, с более высоким уровнем жаропрочности, фазовой стабильности и сопротивлением высокотемпературной коррозии при сохранении высоких характеристик МЦУ, предела выносливости и технологичности.

Для достижения технической задачи предложен жаропрочный сплав на основе никеля, для монокристаллического литья, содержащий углерод, хром, кобальт, вольфрам, молибден, титан, алюминий, тантал, рений, церий, иттрий, кислород, азот, отличающийся тем, что он дополнительно содержит кремний, марганец и железо при следующем соотношении компонентов, мас.%:

Углерод 0,001-0,04 Хром 3,5-5,5 Кобальт 8,0-10,0 Вольфрам 4,5-6,5 Молибден 1,5-2,5 Титан 0,5-1,2 Алюминий 5,5-6,2 Тантал 4,5-7,0 Рений 3,5-5,0 Церий 0,005-0,01 Иттрий 0,001-0,01 Кислород 0,0001-0,001 Азот 0,0001-0,001 Кремний 0,005-0,2 Марганец 0,01-0,2 Железо 0,01-0,5 Никель остальное

при соблюдении следующих условий

11,0%≤W+Та≤12,0% 9,5%≤Ta+Re≤10,5%

6,0%≤Al+Ti≤7,0%.

Жаропрочный сплав на основе никеля может дополнительно содержать, мас.%: ниобий 0,001-0,2 и бор 0,001-0,02.

Легирование сплава кремнием в указанных пределах повышает сопротивление жаропрочного сплава окислению.

Введение железа и марганца в небольших количествах (0,01-0,5% и 0,01-0,2%) повышает технологичность сплава при отливке монокристаллических деталей ГТД, в частности жидкотекучесть сплава при отливке деталей сложной конфигурации.

Суммарное содержание титана и алюминия 6,0-7,0% обеспечивает оптимальное содержание первичной эвтектической γ'-γ фазы (3-5%), которая растворяется при термической обработке, увеличивает количество упрочняющей γ'-γ фазы, тем самым, способствуя упрочнению сплава.

По сравнению со сплавом-прототипом в предлагаемом сплаве понижено содержание вольфрама и увеличено содержание рения, как наиболее эффективно упрочняющего жаропрочные сплавы элемента. Основная трудность, возникающая при разработке сплавов, содержащих рений, связана с тем, что в процессе высокотемпературных нагревов в сплавах может происходить образование фаз, относящихся к разряду топологически плотноупакованных (ТПУ-фазы), которые образуются, как правило, в осях дендритов и представляют собой пластины, выделяющиеся параллельно плоскостям октаэдра {111}. ТПУ-фаза ухудшает свойства сплава, охрупчивая и понижая прочностные характеристики. Снижение содержания вольфрама повышает структурную стабильность сплава относительно выделений ТПУ-фаз. Структурная стабильность ренийсодержащих сплавов относительно образования ТПУ-фазы определяется главным образом соотношением содержания в сплаве Re, W и Та. К тому же ограничение содержания 11%≤(W+Та)≤12% обеспечивает отсутствие поверхностных дефектов типа «струйчатой» ликвации и повышает выход годных по макроструктуре монокристаллических отливок.

Примеры осуществления

В вакуумно-индукционной печи ВИАМ-2002 было выплавлено семь композиций сплавов предлагаемого состава и один сплав, взятый за прототип (Таблица №1). Масса металла каждой плавки составляла 10 кг. Монокристаллические заготовки ориентации [001] с отклонением, не превышающим 5°, диаметром 16 мм и длиной 180 мм получали методом направленной кристаллизации на установке УВНК-9 с жидкометаллическим охлаждением.

Монокристаллические заготовки образцов подвергались высокотемпературной гомогенизации при температуре выше температуры растворения вторичной упрочняющей γ'-фазы и ниже температуры солидуса сплавов. Нагрев до окончательной температуры гомогенизации проводился с промежуточными ступенчатыми изотермическими выдержками, что позволило избежать появления структуры локальных оплавлений. Охлаждение от температуры гомогенизации проводили со скоростью ~100°С/мин. После охлаждения заготовки подвергали двухступенчатому старению.

Оценку уровня жаропрочности предлагаемых составов проводили при температурах испытаний 1000 и 1100°С в соответствии с ГОСТ.

Результаты испытаний представлены в Таблице 2. Полученные результаты свидетельствуют, что предлагаемый сплав обеспечивает более высокий уровень жаропрочности, чем сплав-прототип. При близких уровнях долговечности разрушение образцов предлагаемого сплава происходило при более высоких напряжениях. Время до разрушения при испытаниях на жаропрочность исследованных композиций предлагаемого сплава было значительно больше, чем у сплава-прототипа.

Металлографический анализ структуры разрушенных при температуре испытания 1100°С и напряжении 100 МПа образцов исследованных сплавов не выявил образования при испытании пластинчатых выделений ТПУ-фаз, что свидетельствует о высокой фазовой и структурной стабильности предлагаемого сплава.

Исследование стойкости нового жаропрочного сплава к сульфидно-оксидной коррозии (СОК) проводили при температуре 850°С на цилиндрических образцах ⌀10 мм, h=15 мм по следующему режиму: нанесение солевой корки Na2SO4+NaCl на образцы проводилось путем погружения образцов в раствор солей, сушка образцов, далее выдержка образцов с солевой коркой при температуре 850°С в течение 1 часа, охлаждение на воздухе. Общая продолжительность испытаний - 30 циклов.

Перед испытаниями образцы обезжиривали и взвешивали на аналитических весах с точностью 0,0002 г. Испытания образцов, помещенных в алундовые тигли, проводили в камерной электропечи сопротивления с воздушной атмосферой. Для определения кинетики процесса СОК через каждые 5 циклов испытаний проводили взвешивание образцов. По окончании испытаний образцы подвергали специальной обработке для удаления продуктов коррозии в соответствии с ГОСТ 9.907-83. Скорость сульфидно-оксидной коррозии нового сплава была на порядок ниже, чем у прототипа.

Испытания на малоцикловую усталость (МЦУ) и многоцикловую усталость (МнЦУ - предел выносливости) проводили по ГОСТ 25.502-79. Испытания на МЦУ проводили на базе N=104 циклов, Т=750°С и растягивающем напряжении на сервогидравлических машинах PSB10K при «мягком» цикле от нулевого осевого нагружения (R=0) треугольной формы, частота циклов f=1 Гц. Испытания на МнЦУ на базе 2×107 циклов проводили на машинах МВПВИАМ при температурах 20 и 900°С на гладких образцах при чистом изгибе с вращением (σ-1), цикл нагружения - симметричный (R=-1), частота циклов f=50 Гц. По 3-4 образца от каждой плавки при различных уровнях напряжения. По результатам испытаний строилась обобщенная кривая долговечности (зависимость числа циклов до разрушения от приложенного напряжения), по которой определялся предел выносливости материала при данной температуре (Таблица 2).

Из совокупности полученных результатов следует, что предлагаемый сплав обеспечивает уровень жаропрочности и сопротивление высокотемпературной коррозии, превосходящие жаропрочность и коррозионностойкость сплава-прототипа, а МЦУ и предел выносливости на уровне прототипа. Сплав технологичен при монокристаллическом литье и пригоден для получения отливок сложной конфигурации.

Таким образом, применение предлагаемого сплава позволит повысить ресурс и надежность изделий, в частности рабочих, сопловых лопаток и других элементов горячего тракта турбины ГТД и ГТУ, длительно работающих при температурах, превышающих 1000°С.

Таблица №1 Содержание легирующих элементов в мас.% № п/п С Cr Co W Mo Ti Al Та Re Се Y Si Fe Mn O N Nb В W+Та Та+Re Al+Ti 1 0,001 5,5 8,0 4,5 2,5 0,7 5,80 6,5 4,0 0,025 0,001 0,01 0,5 0,01 0,0005 0,0008 - - 11,0 10,5 6,5 2 0,005 4,5 8,98 5,0 1,5 0,5 5,5 7,0 3,5 0,005 0,003 0,08 0,4 0,2 0,0001 0,0005 - - 12,0 10,5 6,0 3 0,02 3,5 9,3 6,5 1,5 1.2 5,7 4,5 5,0 0,01 0,01 0,005 0,3 0,1 0,0008 0,001 - - 11,0 9,5 6,9 4 0,01 4,3 10,0 6,0 1,8 1.0 5,9 6,0 4,3 0,005 0,004 0,15 0,15 0,05 0,001 0,0008 - - 12,0 10,3 6,9 5 0,04 5,0 9,0 5,8 2,2 0,8 6,2 5,5 4,0 0,008 0,005 0,2 0,01 0,15 0,0006 0,0001 - - 11,3 9,5 7,0 6 0,02 4,5 9,2 5.5 1.8 1,2 5,7 6,0 4,0 0,008 0,003 0,08 0,4 0,2 0,0001 0,0008 0,001 0,02 11,5 10,0 6,9 7 0,01 4,0 8,5 6,0 1,8 1.0 5,9 6,0 4,3 0,005 0,004 0,15 0,15 0,05 0,001 0,0005 0,02 0,001 12,0 10,3 6,9 прототип 0,02 5,2 9,3 7,0 0,8 0,8 5,8 6,0 3,7 0,03 0,002 0,001 0,001 0,8 0,005 Основа - никель

Таблица №2 № п/п Состав Время до разрушения при испытании на длительную прочность (жаропрочность) в часах Скорость циклической сульфидно-оксидной коррозии при 850°С в г/м2·ч Малоцикловая усталость в МПа на базе N=104 цикл. Т=750°С Предел выносливости в МПа на базе циклов 2×107 гладких образцах Температура испытания 1000°С, напряжение 275 МПа Температура испытания 1000°С, напряжение 175 МПа Температура испытания 1100°С, напряжение 150 МПа Температура испытания 1100°С, напряжение 105 МПа Температура испытания 20°С 900°С 1 Заявляемый сплав 116 860 98 975 3,0-4,0 1100 480 400 125 940 105 1025 2 157 1035 126 1140 3,5-4,5 1110 480 410 149 1290 143 1267 3 165 1120 154 1150 2,0-4,0 1100 470 400 180 1250 148 1300 4 148 1050 136 1040 1,9-2,5 1100 480 400 138 1150 142 1089 5 106 820 100 960 4,5-6,0 1120 485 420 103 895 105 895 6 115 1015 98 985 9,0-10,0 1140 480 430 125 1105 107 1025 7 136 960 93 970 8,5-9,5 1135 480 430 125 1040 115 1015 8 Прототип 90 675 74 650 30-50 1050 420 400 80 725 82 720

Похожие патенты RU2465359C1

название год авторы номер документа
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ МОНОКРИСТАЛЛИЧЕСКОГО ЛИТЬЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2008
  • Орехов Николай Григорьевич
  • Толорайя Владимир Николаевич
  • Каблов Евгений Николаевич
  • Демонис Иосиф Маркович
  • Чубарова Елена Николаевна
  • Остроухова Галина Алексеевна
  • Сидоров Виктор Васильевич
  • Хвацкий Константин Константинович
RU2369652C1
ЖАРОПРОЧНЫЙ ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2008
  • Каблов Евгений Николаевич
  • Сидоров Виктор Васильевич
  • Петрушин Николай Васильевич
  • Герасимов Виктор Владимирович
  • Толораия Владимир Николаевич
  • Орехов Николай Григорьевич
RU2365656C1
СОСТАВ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА (ВАРИАНТЫ) 2007
  • Елисеев Юрий Сергеевич
  • Поклад Валерий Александрович
  • Оспенникова Ольга Геннадиевна
  • Ларионов Валентин Николаевич
  • Логунов Александр Вячеславович
  • Разумовский Игорь Михайлович
RU2353691C2
ЖАРОПРОЧНЫЙ СПЛАВ НА НИКЕЛЕВОЙ ОСНОВЕ ДЛЯ МОНОКРИСТАЛЛИЧЕСКОГО ЛИТЬЯ 2010
  • Петрушин Николай Васильевич
  • Каблов Евгений Николаевич
  • Оспенникова Ольга Геннадиевна
  • Ригин Вадим Евгеньевич
  • Герасимов Виктор Владимирович
  • Висик Елена Михайловна
RU2439184C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 1999
  • Каблов Е.Н.
  • Кишкин С.Т.
  • Логунов А.В.
  • Петрушин Н.В.
  • Сидоров В.В.
  • Демонис И.М.
  • Елисеев Ю.С.
RU2148099C1
Литейный жаропрочный никелевый сплав с монокристальной структурой 2021
  • Данилов Денис Викторович
  • Зубарев Геннадий Иванович
  • Кузьмин Максим Владимирович
  • Лещенко Игорь Алексеевич
  • Логунов Александр Вячеславович
  • Марчуков Евгений Ювенальевич
RU2768946C1
ЛИТЕЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2015
  • Шмотин Юрий Николаевич
  • Логунов Александр Вячеславович
  • Лещенко Игорь Алексеевич
  • Заводов Сергей Александрович
  • Данилов Денис Викторович
  • Хрящев Илья Игоревич
  • Михайлов Александр Михайлович
  • Михайлов Михаил Александрович
  • Семин Александр Евгеньевич
RU2626118C2
ЖАРОПРОЧНЫЙ ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2010
  • Логунов Александр Вячеславович
  • Кузменко Михаил Леонидович
  • Шмотин Юрий Николаевич
  • Гришихин Сергей Александрович
RU2439185C1
Литейный жаропрочный никелевый сплав с монокристаллической структурой 2021
  • Данилов Денис Викторович
  • Зубарев Геннадий Иванович
  • Кузьмин Максим Владимирович
  • Лещенко Игорь Алексеевич
  • Логунов Александр Вячеславович
  • Марчуков Евгений Ювенальевич
RU2769330C1
ЖАРОПРОЧНЫЙ СПЛАВ НА НИКЕЛЕВОЙ ОСНОВЕ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2019
  • Каблов Евгений Николаевич
  • Петрушин Николай Васильевич
  • Елютин Евгений Сергеевич
RU2710759C1

Реферат патента 2012 года ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ МОНОКРИСТАЛЛИЧЕСКОГО ЛИТЬЯ

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе никеля, предназначенным для производства методом направленной кристаллизации деталей высокотемпературных газовых турбин ГТД и ГТУ, преимущественно монокристаллических рабочих, сопловых лопаток и других элементов горячего тракта турбины, длительно работающих при температурах, превышающих 1000°С. Сплав характеризуется высоким уровнем жаропрочности, фазовой стабильностью и сопротивлением высокотемпературной коррозии при высоких характеристиках малоцикловой усталости и предела выносливости. Сплав содержит, мас.%: углерод 0,001-0,04, хром 3,5-5,5, кобальт 8,0-10,0, вольфрам 4,5-6,5, молибден 1,5-2,5, титан 0,5-1,2, алюминий 5,5-6,2, тантал 4,5-7,0, рений 3,5-5,0, церий 0,005-0,01, иттрий 0,001-0,01, кислород 0,0001-0,001, азот 0,0001-0,001, кремний 0,005-0,2, марганец 0,01-0,2, железо 0,01-0,5, никель - остальное, при соблюдении следующих условий: 11,0%≤W+Ta≤12,0%, 9,5%≤Ta+Re≤10,5% 6,0%≤Al+Ti≤7,0%. 1 з.п. ф-лы, 2 табл., 7 пр.

Формула изобретения RU 2 465 359 C1

1. Жаропрочный сплав на основе никеля для монокристаллического литья, содержащий углерод, хром, кобальт, вольфрам, молибден, титан, алюминий, тантал, рений, церий, иттрий, кислород, азот, отличающийся тем, что он дополнительно содержит кремний, марганец и железо, при следующем соотношении компонентов, мас.%:
Углерод 0,001-0,04 Хром 3,5-5,5 Кобальт 8,0-10,0 Вольфрам 4,5-6,5 Молибден 1,5-2,5 Титан 0,5-1,2 Алюминий 5,5-6,2 Тантал 4,5-7,0 Рений 3,5-5,0 Церий 0,005-0,01 Иттрий 0,001-0,01 Кислород 0,0001-0,001 Азот 0,0001-0,001 Кремний 0,005-0,2 Марганец 0,01-0,2 Железо 0,01-0,5 Никель Остальное,


при соблюдении следующих условий:
11,0%≤W+Ta≤12,0%,
9,5%≤Ta+Re≤10,5%,
6,0%≤Al+Ti≤7,0%.

2. Жаропрочный сплав на основе никеля по п.1, отличающийся тем, что он дополнительно содержит, мас.%: ниобий 0,001-0,2 и бор 0,001-0,02.

Документы, цитированные в отчете о поиске Патент 2012 года RU2465359C1

ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2006
  • Орехов Николай Григорьевич
  • Толорайя Владимир Николаевич
  • Каблов Евгений Николаевич
  • Демонис Иосиф Маркович
  • Чубарова Елена Николаевна
  • Остроухова Галина Алексеевна
RU2318030C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ МОНОКРИСТАЛЛИЧЕСКОГО ЛИТЬЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2008
  • Орехов Николай Григорьевич
  • Толорайя Владимир Николаевич
  • Каблов Евгений Николаевич
  • Демонис Иосиф Маркович
  • Чубарова Елена Николаевна
  • Остроухова Галина Алексеевна
  • Сидоров Виктор Васильевич
  • Хвацкий Константин Константинович
RU2369652C1
МОНОКРИСТАЛЬНЫЙ НИКЕЛЕВЫЙ ЖАРОПРОЧНЫЙ СПЛАВ 2004
  • Ганеев Альмир Амирович
  • Никифоров Павел Николаевич
RU2297466C2
Устройство для контроля импульсных трансформаторов в составе электронных блоков 1987
  • Байда Николай Прокофьевич
  • Котов Игорь Николаевич
  • Олоничев Александр Павлович
  • Очкуров Николай Андреевич
  • Шпилевой Валерий Терентьевич
SU1471158A1

RU 2 465 359 C1

Авторы

Толорайя Владимир Николаевич

Каблов Евгений Николаевич

Орехов Николай Григорьевич

Остроухова Галина Алексеевна

Чубарова Елена Николаевна

Алешин Игорь Николаевич

Даты

2012-10-27Публикация

2011-09-15Подача