СПОСОБ ПЕРЕРАБОТКИ ТЕТРАХЛОРИДА ЦИРКОНИЯ С ПОЛУЧЕНИЕМ ДИОКСИДА ЦИРКОНИЯ И СОЛЯНОЙ КИСЛОТЫ Российский патент 2012 года по МПК C01G25/02 

Описание патента на изобретение RU2466095C1

Изобретение относится к способам переработки тетрахлорида циркония в области хлорной металлургии при получении диоксида циркония и соляной кислоты.

Известен способ получения двуокиси циркония обработкой тетрахлорида циркония парами воды при температуре ниже 150°С и мольном отношении паров воды к тетрахлориду циркония меньшем 2. Полученный продукт - оксихлорид циркония с отношением Cl:Zr=2,2 и О:Zr=1,9 прокаливают в муфельной печи 2 ч при 300°С. Выделяющиеся при прокаливании хлористый водород и пары тетрахлорида циркония направляют в систему улавливания [1]. Недостатками данного способа являются отсутствие утилизации хлористого водорода и неполное использование тетрахлорида циркония.

Наиболее близким из известных аналогов по технической сущности и достигаемым результатам является способ переработки тетрахлорида циркония с получением диоксида циркония и соляной кислоты [2] (ПРОТОТИП).

Согласно способу-прототипу тетрахлорид циркония растворяют в воде, при термогидролизе солянокислого раствора оксихлорида циркония осаждают гидроксид циркония или введением серной кислоты осаждают основной сульфат циркония и отгоняют парогазовую смесь НСl-Н2O. Суспензию фильтруют, осадок сушат и прокаливают с получением диоксида циркония. Парогазовую смесь НСl-Н2O абсорбируют водой, образующийся солянокислый раствор укрепляют солевой ректификацией с применением в качестве разделяющего агента хлоридов щелочноземельный металлов с получением товарной 31%-ной НСl соляной кислоты.

Недостатками данного способа являются сложность процесса, обусловленная использованием солевой ректификации с применением разделяющего агента и необходимость регенерацииразделяющего агентавыпариванием, что связано с дополнительными энергетическими затратами.

Технической задачей изобретения является упрощение технологии получения диоксида циркония и концентрирования соляной кислоты.

Достижение указанного технического результата обеспечивается последовательностью действий и технологическими параметрами выполнения предлагаемого способа, сущность которого выражается следующей совокупностью существенных признаков:

- смешение тетрахлорида циркония с водой при молярном отношении ZrCl42O=1:(1,0-1,2) и разогрев до 160-180°С с получением порошкообразного оксихлорида циркония и выделением газообразного хлористого водорода;

- растворение порошкообразного оксихлорида циркония в воде, введение серной кислоты при молярном отношении ZrOCl2:H2SO4=1:(0,5-0,6), нагревание реакционной массы до 110-115°С, отгонку азеотропной смеси НСl-Н2O (~20 мас.% НСl) и осаждение основного сульфата циркония;

- абсорбцию выделившегося при смешении тетрахлорида циркония с водой газообразного хлористого водорода с использованием в качестве абсорбента получаемой при выделении основного сульфата циркония азеотропной смеси НСl-Н2O (~20 мас.% НСl) и получением 31-35 мас.% НСl соляной кислоты;

- фильтрование, промывку очищенной (например, деминерализованной) водой и прокалку основного сульфата циркония с получением диоксида циркония и отходящих газов.

Существенными отличительными признаками предлагаемого способа получения диоксида циркония являются:

- использование в качестве реагента при получении оксихлорида циркония воды при молярном отношение ZrCl42O=1:(1,0-1,2) и последующее повышение температуры процесса до 160-180°С с получением в результате взаимодействия газообразного хлористого водорода и порошкообразного оксихлорида циркония;

- использование в качестве абсорбента при абсорбции выделившегося при смешении тетрахлорида циркония с водой хлористого водорода азеотропной смеси НСl-Н2О (~20 мас.% НCl), образующейся при осаждении основного сульфата циркония с получением товарной (31-35 мас.% НСl) соляной кислоты.

Следует отметить, что в сравнении с прототипом исключается солевая ректификация и регенерация методом выпаривания разбавленного отработанного раствора хлоридов щелочноземельных металлов или другого разделяющего агента.

Из сравнения рассматриваемых способов следует, что новые приемы выполнения действий и новый порядок выполнения действий обеспечивает достижение технического результата при осуществлении изобретения.

На чертеже показана технологическая схема получения диоксида циркония.

При смешении тетрахлорида циркония с водой и соблюдении молярного отношения ZrCl4:H2O=1:(1,0-1,2) происходит разогрев смеси до 65-70°С и выделение газообразного хлористого водорода, для полноты удаления которого на 85-90% реакционная масса подогревается до 160-180°С. В результате такой обработки получаются порошокообразный оксихлорид циркония и хлористый водород.

Порошкообразный оксихлорид циркония растворяется в воде и в полученный раствор дозируется серная кислота для осаждения основного сульфата циркония. Процесс проводится при нагревании с отгонкой из реакционной массы азеотропной смеси НСl - Н2O (~20 мас.% НСl). Полученную суспензию основного сульфата циркония разбавляют водой, фильтруют, промытый очищенной водой осадок направляют на сушку и прокалку с получением диоксида циркония.

Газообразный хлористый водород, полученный при смешении тетрахлорида циркония с водой, направляют на абсорбцию хлористого водорода с использованием в качестве абсорбентаазеотропной смеси HCl-Н2O (~20 мас.% НСl) и получением 31-35 мас.% НСl соляной кислоты. Полученная при абсорбции концентрированная соляная кислота может быть использована в цветной металлургии при выщелачивании концентратов и руд, травлении металлических поверхностей оборудования, металлопроката и других целей.

Отходящие газы, образующиеся при прокалке основного сульфата циркония, а также при абсорбции и сантехнические обезвреживаются известными способами.

Пример осуществления способа.

233 г тетрахлорида циркония смешали с 18 мл воды, полученную смесь разогрели до 170°С и выдержали при размешивании в течение 2 часов. В процессе придачи воды, разогреве и выдержки получено 65,8 г хлористого водорода. Полученный порошкообразный оксихлорид циркония в количестве <185,2 г растворили в 430 см3 воды, в раствор загрузили 63,9 г 92 мас.% серной кислоты, при температуре 110-115°С отогнали 360 г азеотропной смеси НСl-Н2O (содержащей 72 г НСl). Упаренный цирконийсодержащий раствор разбавили водой, смесь нагрели до 95°С, выдержали для осаждения основного сульфата циркония, полученную суспензию отфильтровали, осадок промыли деминерализованной водой, высушили, сухой продукт прокалили при 900°С и получили 120,8 г диоксида циркония.

Хлористый водород в количестве 65,8 г, полученный при смешении тетрахлорида циркония с водой, абсорбировали 360 г азеотропной смеси НСl-Н2O (содержащей 72 г НСl), полученной при осаждении сульфата циркония. В результате абсорбции получено 425,8 г соляной кислоты с концентрацией 32,4 мас.% НСl. Такая кислота является товарной продукцией и может быть использована в цветной и черной металлургии, химической и других отраслях промышленности.

Список использованных источников

1. А.с. №272 293, МПК С01G 25/02. Способ получения двуокиси циркония // Заявл. 18.12.68. №1290771/23-26. Опубл. 03.06.70. БИ №19.

2. Кожемякин B.A., Елфимов И.И. Малоотходное производство соединений циркония. Цветные металлы, 1981, №10, с.75-77.

Похожие патенты RU2466095C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ ЦИРКОНОВОГО КОНЦЕНТРАТА 2010
  • Муклиев Владимир Ильич
  • Овчинников Сергей Евгеньевич
  • Нагаев Тимур Халидович
  • Каримов Ильдар Афлятунович
  • Красилова Наталья Игнатьевна
RU2450974C1
СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА ЦИРКОНИЯ 1996
  • Седнева Т.А.
  • Тюлюнов И.П.
  • Маслобоев В.А.
RU2125969C1
Способ получения основного сульфатациРКОНия 1979
  • Барышников Николай Васильевич
  • Варэн Виктор Викторович
  • Докман Валентин Сергеевич
  • Кожемякин Владимир Алексеевич
  • Никольская Вилетта Рудольфовна
  • Почтарев Александр Николаевич
  • Юфряков Владимир Акиндинович
SU796191A1
СПОСОБ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА 2003
  • Щелконогов А.А.
  • Муклиев В.И.
  • Гулякин А.И.
  • Козлов Ю.А.
  • Кочелаев В.А.
  • Каримов И.А.
  • Фрейдлина Р.Г.
RU2241670C1
СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА ЦИРКОНИЯ 1997
  • Воскобойников Н.Б.
  • Скиба Г.С.
  • Калинкин А.М.
  • Носова Л.А.
RU2116254C1
СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА ТИТАНА 1991
  • Крохин В.А.
  • Щелконогов А.А.
  • Антипов И.В.
  • Каравайный А.И.
  • Титов А.А.
  • Мальцев Н.А.
  • Булгаков В.Н.
  • Мельников Л.В.
  • Заиканов В.Н.
  • Жуланов Н.К.
  • Ряпосов Ю.А.
  • Юков А.Г.
RU2022929C1
Способ получения двуокиси циркония 1979
  • Походенко Владимир Никифорович
  • Кисина Лина Ильинична
  • Крапивина Валентина Яковлевна
SU867880A1
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО ЦИРКОНИЯ 2009
  • Фудзита Рейко
  • Мизугути Кодзи
  • Накамура Хитоси
  • Фузе Коуки
  • Кавамото Мицуру
  • Ито Масару
RU2468104C2
Способ получения металлорганического каркаса на основе циркония 2022
  • Исаева Вера Ильинична
  • Вергун Вадим Вячеславович
  • Кустов Леонид Модестович
RU2784345C1
СПОСОБ ОТДЕЛЕНИЯ ГАФНИЯ ОТ ЦИРКОНИЯ 2003
  • Соммерз Джеймс А.
  • Перрин Джефф Дж.
RU2296172C2

Иллюстрации к изобретению RU 2 466 095 C1

Реферат патента 2012 года СПОСОБ ПЕРЕРАБОТКИ ТЕТРАХЛОРИДА ЦИРКОНИЯ С ПОЛУЧЕНИЕМ ДИОКСИДА ЦИРКОНИЯ И СОЛЯНОЙ КИСЛОТЫ

Изобретение относится к способам переработки тетрахлорида циркония и может быть использовано в области хлорной металлургии при получении диоксида циркония и соляной кислоты. Способ включает смешение тетрахлорида циркония с водой при молярном отношении ZrCL42O=1:(1,0-1,2), получение оксихлорида циркония и газообразного хлористого водорода, растворение оксихлорида циркония в воде, введение серной кислоты с отгонкой азеотропной смеси НСl-Н2O и осаждением основного сульфата циркония, фильтрование суспензии, промывку и прокалку осадка с получением диоксида циркония. Образующийся при получении оксихлорида циркония газообразный хлористый водород направляется на абсорбцию, где в качестве абсорбента применяется полученная при осаждении основного сульфата циркония азеотропная смесь НСl-Н2O. Полученная при абсорбции концентрированная соляная кислота может быть использована в цветной металлургии при выщелачивании концентратов и руд, травлении металлических поверхностей оборудования, металлопроката и для других целей. Изобретение упрощает технологию получения диоксида циркония и концентрированной соляной кислоты. 1 ил., 1 пр.

Формула изобретения RU 2 466 095 C1

Способ переработки тетрахлорида циркония с получением диоксида циркония и соляной кислоты, включающий взаимодействие тетрахлорида циркония с водой, получение оксихлорида циркония и газообразного хлористого водорода, растворение оксихлорида циркония в воде, введение серной кислоты с отгонкой азеотропной смеси НСl-Н2O и осаждением основного сульфата циркония, абсорбцию хлористого водорода, фильтрование суспензии, промывку и прокалку осадка, отличающийся тем, что тетрахлорид циркония смешивают с водой при молярном отношении ZrCl4:H2O=1:(1,0-1,2), разогревают до температуры 160-180°С с получением порошкообразного оксихлорида циркония и выделением газообразного хлористого водорода, направляемого на абсорбцию, где в качестве абсорбента применяется отгоняемая при введении серной кислоты и осаждении основного сульфата циркония азеотропная смесь НСl-Н2O.

Документы, цитированные в отчете о поиске Патент 2012 года RU2466095C1

КОЖЕМЯКИН В.А., ЕЛФИМОВ И.И
Малоотходное производство
соединений циркония
Цветные металлы, 1981, №10, с.75-77
Способ получения двуокиси циркония 1979
  • Походенко Владимир Никифорович
  • Кисина Лина Ильинична
  • Крапивина Валентина Яковлевна
SU867880A1
СПОСОБ ПОЛУЧЕНИЯ ДВУОКИСИ ЦИРКОНИЯ 0
SU272293A1
СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА ЦИРКОНИЯ 1993
  • Олейникова Бэлла Ильинична
  • Макарова Людмила Ивановна
  • Кузнецов Александр Иванович
  • Сметанина Галина Федоровна
  • Егоров Константин Григорьевич
RU2042630C1
DE 2854200 В1, 04.06.1980.

RU 2 466 095 C1

Авторы

Нагаев Тимур Халидович

Муклиев Владимир Ильич

Овчинников Сергей Евгеньевич

Каримов Ильдар Афлятунович

Калинина Наталья Анатольевна

Даты

2012-11-10Публикация

2011-02-24Подача