Изобретение относится к способам очистки ректификационного оборудования получения стирола и может быть использовано, в том числе в совместном производстве окиси пропилена и стирола.
Процессы выделения стирола из углеводородных фракций или очистки от примесей ректификацией сопровождается его нежелательной полимеризацией, поэтому требуют использования ингибиторов.
В процессе совместного получения стирола и окиси пропилена, который включает стадии: окисления этилбензола в гидропероксид, эпоксидирование пропилена для получения оксида пропилена и метилфенилкарбинола (МФК), дегидратацию образующегося МФК. Дегидратация МФК осуществляется в присутствии катализатора при температуре 250-320°C и сопровождается рядом побочных реакций с образованием ацетофенона, этилбензола, бензола, бензойной кислоты, бензальдегида, пропионового альдегида, гексеналя и других соединений, многие из которых вступают в реакцию альдольной конденсации. Температура контактного газа на выходе из реакторов получения стирола достигает 130°C, поэтому для предотвращения радикальной термоинициированной полимеризации стирола используют ингибиторы. Однако процессы альдольной конденсации, а также димеризацию стирола предотвратить не удается, поэтому на практике, в контактном газе, поступающем на установку ректификации, содержание растворимого в стироле полимера составляет 0,002-0,5 мас.%. Такое содержание полимера способствует его отложению в оборудовании.
Особенно актуальной становится проблема загрязнений полимерными отложениями для колонн с регулярной насадкой, которая не поддается чистке ручным способом. Растворение отложений в период останова на капитальный ремонт требует длительного времени, большого расхода растворителя, при этом не достигается полная его очистка. Все это приводит к большим экономическим потерям, прежде всего за счет снижения производительности оборудования.
Существует способ очистки химического оборудования от загрязнений, заключающийся в промывке аппарата жидкостью на углеводородной основе. Для очистки аппарат присоединяют к специальной установке. Процесс протекает при достаточно высоких температурах 200-400°C и давлении до 50 бар. Осуществление такой операции требует демонтажа оборудования (патент РФ №2355486, МПК7 B08B 9/032, опубл. 27.06.2005). Такие условия проведения очистки неприемлемы для промышленных условий.
Известен способ удаления смолистых и полимерных отложений с поверхности рабочего оборудования нанесением раствора органической перекиси в органическом растворителе, активацией нагреванием и одновременной промывкой этих отложений водно-щелочным раствором (патент США №3654940, МПК B08B 3/08, опубл. 11.04.1972).
Недостатками способа являются необходимость останова и вскрытия оборудования, приводящие к сокращению годового пробега, а также необходимость утилизации водно-щелочного раствора.
Наиболее близким к предлагаемому, является способ очистки технологического оборудования от полимерных и смолистых отложений (патент РФ №2243830, МПК7 B08B 3/08, опубл. 10.01.2005) включающий обработку оборудования деструктирующей системой, представляющей собой 0,0001 - 40% раствор 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила или смеси 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и димера 2,2'6,6'-тетраметил-4-оксопиперидин-4-фульвена в органическом растворителе. Однако при наличии в отложениях примесей, характерных для процесса совместного получения стирола и окиси пропилена, эффективность процесса недостаточно высокая.
Задачей предлагаемого изобретения является увеличение эффективности деструктирующего раствора, позволяющего проводить очистку ректификационного оборудования от полимерных отложений в процессах получения стирола.
Поставленная задача решается способом очистки ректификационного оборудования от полимерных отложений в процессе получения стирола путем их обработки деструктирующим раствором на основе 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила с массовой концентрацией активных компонентов 0,0001-40%, причем деструктирующая система дополнительно содержит производные гидроксиламина общей формулы: R,R,NOH, где R-алкильная группа от 1 до 4 атомов углерода, при этом соотношение функциональных групп NO•:NOH=1:0,05-0,3.
Наиболее целесообразно готовить раствор деструктирующей системы в веществах, присутствующих в процессе получения стирола, но возможно использование и других растворителей, подходящих для данного процесса.
Отличительными признаками предлагаемого способа является то, что для очистки ректификационного оборудования в качестве деструктирующей системы используют синергетическую смесь раствора на основе 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и производных гидроксиламина, при этом оптимальное соотношение NO•:NOH=1:0,05-0,3.
Раствор с соотношением функциональных групп NO•:NOH ниже указанных пределов не обладает синергетическим эффектом, выше указанных пределов - неэкономичен.
Введение новых отличительных признаков в сочетании с достигаемым результатом указывает на «изобретательский уровень» предлагаемого изобретения.
Предлагаемое изобретение соответствует критерию «промышленная применимость», так как оно может быть использовано в промышленности, что подтверждается примерами конкретного осуществления изобретения.
Пример 1
Испытания проводят на лабораторной установке, представляющей собой круглодонную колбу с обратным холодильником, при остаточном давлении 300-400 мм рт.ст., температуре в кубе 120°C, предусматривается полная конденсация паров стирола. Между колбой и холодильником устанавливается стеклянная трубка с насадками, моделирующая тарелки в колонне разделения этилбензола и стирола. Трубка с насадками взвешивается на аналитических весах с точностью 0,0002 г. На насадку помещают образцы полимерных отложений с промышленной установки получения стирола, состоящие из олигомеров и полимера стирола, продуктов конденсации непредельных и кислородсодержащих соединений, смол, взвешенные на аналитических весах с точностью 0,0002 г.
В колбу загружают стирол, содержащий любой классический раствор ингибитора (аминофенол, хинон, фенилендиамин, гидроксиламин, динитросоединение и/или их смеси), в количествах, полностью предотвращающих полимеризацию стирола в условиях эксперимента. В процессе испытаний ведут визуальные наблюдения. После проведения опыта трубку с насадками продувают азотом в течение 15 минут и взвешивают.
После проведенного опыта вес полимера, помещенного в трубку с насадкой, не изменился, что свидетельствует о том, что известные классические ингибирующие системы не оказывают деструктирующего действия на ранее образованный полимер.
Пример 2
Опыт проводят в условиях примера 1. В колбу добавляют раствор на основе 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила с концентрацией активных компонентов 1 мас.%.
После проведенного опыта полимер, помещенный в трубку с насадкой, частично растворился, что свидетельствует о том, что 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксил способствует деструкции полимера, при этом эффективность деструкции не достигает максимальных значений.
Результаты опыта представлены в таблице.
Пример 3
Опыт проводят в условиях примера 1. В колбу добавляют раствор на основе 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксида с концентрацией активных компонентов 40 мас.%.
После проведенного опыта полимер, помещенный в трубку с насадкой, частично растворился, что свидетельствует о том, что 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксил способствует деструкции полимера, при этом эффективность деструкции не достигает максимальных значений.
Результаты опыта представлены в таблице.
Пример 4
Опыт проводят в условиях примера 1. В колбу добавляют раствор диэтилгидроксиламина с концентрацией активных компонентов 40 мас.%.
После проведенного опыта полимер, помещенный в трубку с насадкой, частично растворился, что свидетельствует о том, что диэтилгидроксиламин способствует частичной деструкции ранее образованного полимера.
Результаты опыта представлены в таблице.
Пример 5
Опыт проводят в условиях примера 1. В колбу добавляют раствор диэтилгидроксиламина с концентрацией активных компонентов 0,0001 мас.%.
После проведенного опыта полимер, помещенный в трубку с насадкой, незначительно растворился, что свидетельствует о том, что диэтилгидроксиламин способствует частичной деструкции ранее образованного полимера.
Результаты опыта представлены в таблице.
Пример 6
Опыт проводят в условиях примера 1. В колбу добавляют раствор на основе 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и диэтилгидроксиламина с концентрацией активных компонентов 0,0001 мас.%. Соотношение NO•:NOH в растворе составляет 1:0,05.
После проведенного опыта насадка чистая, полимер, помещенный в трубку с насадкой, растворился, что свидетельствует о том, что при совместном использовании 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и диэтилгидроксиламина наблюдается увеличение эффективности деструкции полимера.
Результаты опыта представлены в таблице.
Пример 7
Опыт проводят в условиях примера 1. В колбу добавляют раствор на основе 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и диэтилгидроксиламина с концентрацией активных компонентов 0,00005 мас.%. Соотношение NO•:NOH в растворе составляет 1:0,3.
После проведенного опыта полимер, помещенный в трубку с насадкой, почти растворился, что свидетельствует о том, что при совместном использовании 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и диэтилгидроксиламина наблюдается увеличение эффективности деструкции полимера, причем соотношение NO•:NOH в растворе, взятое 1:0,3, наиболее предпочтительно.
Результаты опыта представлены в таблице.
Пример 8
Опыт проводят в условиях примера 1. В колбу добавляют раствор на основе 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и диэтилгидроксиламина с концентрацией активных компонентов 40 мас.%. Соотношение NO•:NOH в растворе составляет 1:0,3.
После проведенного опыта насадка чистая, полимер, помещенный в трубку с насадкой, растворился, что свидетельствует о том, что при совместном использовании 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и диэтилгидроксиламина наблюдается увеличение эффективности деструкции полимера.
Результаты опыта представлены в таблице.
Пример 9
Опыт проводят в условиях примера 1. В колбу добавляют раствор на основе 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и дибутилгидроксиламина с концентрацией активных компонентов 0,5 мас.%. Соотношение NO•:NOH в растворе составляет 1:0,15.
После проведенного опыта насадка чистая, полимер, помещенный в трубку с насадкой, растворился, что свидетельствует о том, что при совместном использовании 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и дибутилгидроксиламина наблюдается увеличение эффективности деструкции полимера.
Результаты опыта представлены в таблице.
Пример 10
Опыт проводят в условиях примера 1. В колбу добавляют раствор на основе 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и диэтилгидроксиламина с концентрацией активных компонентов 10 мас.%. Соотношение NO•:NOH в растворе составляет 1:0,3.
После проведенного опыта насадка чистая, полимер, помещенный в трубку с насадкой, растворился, что свидетельствует о том, что при совместном использовании 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и диэтилгидроксиламина наблюдается увеличение эффективности деструкции полимера.
Результаты опыта представлены в таблице.
Пример 11
Опыт проводят в условиях примера 1. В колбу добавляют раствор на основе 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и диэтилгидроксиламина с концентрацией активных компонентов 45 мас.%. Соотношение NO•:NOH в растворе составляет 1:0,2.
После проведенного опыта насадка чистая, полимер, помещенный в трубку с насадкой, растворился, что свидетельствует о том, что при совместном использовании 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и диэтилгидроксиламина наблюдается увеличение эффективности деструкции полимера.
Результаты опыта представлены в таблице.
Пример 12
В углеводородный сырьевой поток колонны промышленной установки разделения стирола и легкокипящих углеводородов с регулярной насадкой, загрязненной полимером, во время опытно-промышленных испытаний подается 500 л/час ацетофенона, содержащего 1 мас.% 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и диэтилгидроксиламина. Соотношение NO•:NOH в растворе составляет 1:0,15.
Колонна работает при следующих технологических параметрах: температура куба - 88°C, остаточное давление куба - 70 мм рт.ст., остаточное давление верха - 50 мм рт.ст.
Косвенной оценкой эффективности работы колонны в процессе эксплуатации является состав дистиллята, а именно содержание в нем этилбензола. На начало испытаний, содержание этилбензола в дистилляте колонны составляло 12 мас.% (при пуске установки на чистой насадке содержание этилбензола в дистилляте колонны составляло 25 мас.%). В процессе использования деструктирующего раствора данный показатель вырос до 25 мас.% за счет увеличения поверхности контакта (увеличение числа условных теоретических тарелок) после растворения полимерных отложений на насадке.
Приведенные примеры наглядно демонстрируют преимущества предлагаемого изобретения, а именно: синергетический эффект от совместного использования 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила и производных гидроксиламина, простоту способа, сокращение потерь целевых продуктов, увеличение эффективности работы ректификационного оборудования, улучшение качества товарного продукта.
В результате применения предлагаемого способа восстанавливается эффективность работы ректификационных колонн, в том числе с регулярной насадкой, снижается образование смол, снижается расход флегмы, сокращается расход энергоносителей на очистку технологического оборудования, уменьшаются потери целевых продуктов, снижается расход используемых классических ингибиторов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОЧИСТКИ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ ОТ ПОЛИМЕРНЫХ И СМОЛИСТЫХ ОТЛОЖЕНИЙ | 2003 |
|
RU2243830C1 |
СПОСОБ РЕГУЛИРОВАНИЯ МОЛЕКУЛЯРНО-МАССОВЫХ ХАРАКТЕРИСТИК БУТАДИЕНОВЫХ КАУЧУКОВ | 2009 |
|
RU2402573C1 |
СПОСОБ ИНГИБИРОВАНИЯ ПРОЦЕССА ПОЛИМЕРИЗАЦИИ ВИНИЛАРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ | 1996 |
|
RU2106331C1 |
СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРА ПОЛИМЕРИЗАЦИИ НЕПРЕДЕЛЬНЫХ УГЛЕВОДОРОДОВ | 1998 |
|
RU2139859C1 |
СПОСОБ ИНГИБИРОВАНИЯ ПОЛИМЕРИЗАЦИИ ВИНИЛЦИКЛИЧЕСКИХ И АЛКИЛВИНИЛЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ | 1998 |
|
RU2139860C1 |
СПОСОБ ИНГИБИРОВАНИЯ ПРОЦЕССА ПОЛИМЕРИЗАЦИИ ВИНИЛАРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ | 2003 |
|
RU2243201C1 |
СПОСОБ ИНГИБИРОВАНИЯ ПРОЦЕССА ПОЛИМЕРИЗАЦИИ ДИОЛЕФИНОВЫХ УГЛЕВОДОРОДОВ | 1996 |
|
RU2128171C1 |
СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРА ПОЛИМЕРИЗАЦИИ НЕПРЕДЕЛЬНЫХ УГЛЕВОДОРОДОВ | 1996 |
|
RU2114830C1 |
СПОСОБ ИНГИБИРОВАНИЯ СМОЛООБРАЗОВАНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ | 2005 |
|
RU2285687C1 |
СПОСОБ ИНГИБИРОВАНИЯ ПРОЦЕССА ТЕРМОПОЛИМЕРИЗАЦИИ И СМОЛООБРАЗОВАНИЯ НЕПРЕДЕЛЬНЫХ УГЛЕВОДОРОДОВ | 1996 |
|
RU2114154C1 |
Изобретение относится к способам очистки ректификационного оборудования получения стирола и может быть использовано, в том числе, в совместном производстве окиси пропилена и стирола. Способ очистки от полимерных отложений заключается в обработке ректификационного оборудования деструктирующим раствором на основе 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила с массовой концентрацией активных компонентов 0,0001-40%. Деструктирующая система дополнительно содержит производные гидроксиламина общей формулы: R,R,NOH где R-алкильная группа от 1 до 4 атомов углерода. При этом соотношение функциональных групп NO•:NOH=1:0,05-0,3. Изобретение обеспечивает повышению эффективность работы ректификационного оборудования, снижение образования смол, снижение расхода флегмы и энергоносителей на очистку оборудования, уменьшение потерь целевых продуктов и улучшение качества товарного продукта. 1 табл., 12 пр.
Способ очистки от полимерных отложений ректификационного оборудования в процессе получения стирола путем обработки деструктирующим раствором на основе 2,2'6,6'-тетраметил-4-оксопиперидин-1-оксила с массовой концентрацией активных компонентов 0,0001-40%, отличающийся тем, что деструктирующая система дополнительно содержит производные гидроксиламина общей формулы: R,R,NOH, где R - алкильная группа от 1 до 4 атомов углерода, при этом соотношение функциональных групп NO•:NOH=1:0,05-0,3.
СПОСОБ ОЧИСТКИ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ ОТ ПОЛИМЕРНЫХ И СМОЛИСТЫХ ОТЛОЖЕНИЙ | 2003 |
|
RU2243830C1 |
СПОСОБ ИНГИБИРОВАНИЯ ПОЛИМЕРИЗАЦИИ ВИНИЛЦИКЛИЧЕСКИХ И АЛКИЛВИНИЛЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ | 1998 |
|
RU2139860C1 |
Способ стабилизации стирола или метилметакрилата | 1981 |
|
SU1027150A1 |
СПОСОБ ОЧИСТКИ | 2003 |
|
RU2355486C2 |
US 3654940 A, 11.04.1972. |
Авторы
Даты
2012-11-27—Публикация
2011-07-13—Подача