Изобретение относится к области металлургии титановых сплавов и может быть использовано для изготовления деталей узлов ракетных двигателей, работающих в условиях высоких нагрузок при температурах до 800°С, в том числе длительное время.
При использовании сплавов в указанных конструкциях следует учитывать следующие обязательные требования:
- сплавы должны обладать достаточно стабильным фазовым составом, исключающим возможность охрупчивания в процессе в процессе длительного нагружения и обеспечивать высокую прочность и сопротивление ползучести при рабочих температурах;
- сплавы должны обладать высокой жаростойкостью, обеспечивающей исключение проникающего окисления в процессе долговременной эксплуатации, при рабочих температурах.
Из уровня техники известен деформированный жаропрочный сертифицированный титановый сплав ВТ18У (Ильин А. А., Колачев Б. А., Полькин И.С. Титановые сплавы. Состав, структура, свойства. Справочник. - М.: ВИЛС - МАТИ, 2009 г., с. 66, 74 [1]), применяемый в авиационной промышленности для лопаток, дисков компрессоров двигателей, имеющий следующий химический состав, мас.%:
Однако сплав на основе α-фазы (псевдо α-сплав) работоспособен до температуры 600°С и кратковременно до 650°С. Существенным недостатком сплава является его термическая нестабильность в процессе длительной эксплуатации; довольно низкая технологичность при горячей деформации из-за достаточно высокого содержания алюминия в сочетании с оловом и низкая жаростойкость: сплав интенсивно окисляется при нагреве выше 600°С.
Известен титановый сплав (патент RU 2405849 C1, C22C 14/00, 10.12.2010 [2]), имеющий следующий химический состав, мас.%:
Исходя из наличия в сплаве большого количества алюминия, его следует отнести к двухфазным α+α2 (Ti3Al) - сплавам с небольшим содержанием дополнительно β-фазы (из-за высокого содержания β-стабилизаторов Nb, Mo, Та, W). Это обстоятельство позволяет утверждать, что сплав не может быть термически стабильным по фазовому составу в процессе окисления при высоких температурах и будет охрупчиваться. Другим недостатком сплава является низкая технологическая пластичность при горячей деформации, что обуславливает возможность использования сплава только в литом состоянии или возможно в виде гранул с последующим газостатированием, что экономически представляется невыгодным. И, наконец, сплав является недостаточно жаростойким: интенсивно окисляется при температурах выше 700°С.
Наиболее близким аналогом (прототипом) является жаропрочный титановый сплав (патент RU 2396366 C1, C22C 14/00, 10.08.2010, [3]), характеризующийся следующим химическим составом, мас.%:
Сплав использовался в турбонасосных агрегатах жидкостных ракетных двигателей в виде роторов, работающих кратковременно при температурах 750-800°С. Недостатками указанного сплава являются невозможность его использования при температуре 800°С длительное время и значительное окисление при температуре выше 780°С.
Задачей предлагаемого изобретения является создание технологичного высокожаропрочного и жаростойкого титанового сплава, работающего при температурах до 800°С при длительном нагружении.
Технический результат - улучшение весовых характеристик сплава, обеспечение надежности работы титановых деталей - изделий при температурах до 800°С в течение длительного времени, обеспечение высокой прочности и сопротивления ползучести при отсутствии отхрупчивания в процессе работы.
Поставленная задача достигается тем, что жаропрочный и жаростойкий титановый сплав, содержащий алюминий, цирконий, вольфрам, гафний, титан, дополнительно делегирован ниобием при следующем соотношении компонентов, мас.%:
Данное увеличение содержания гафния и введение ниобия в сплав позволяет повысить жаропрочность сплава за счет того, что оба этих элемента значительно более тугоплавки, чем титан и, следовательно, дополнительно повышают уровень межатомных связей и снижают диффузионную подвижность атомов при высоких температурах. Одновременно оба элемента заметно повышают стойкость титановых сплавов против окисления. Тот же эффект усиливает повышение нижних пределов содержания алюминия и вольфрама до 6,0 мас.%.
Следует также отметить, что гафний, являясь нейтральным упрочнителем, а ниобий β-изоморфным элементом, что должно повысить технологическую пластичность сплава как при нормальных, так и при повышенных температурах, что немаловажно для титановых сплавов, содержащих достаточно высокое количество алюминия.
Ниобий, содержащийся в жаропрочном титановом сплаве наряду с вышеупомянутым цирконием и вольфрамом, позволяет сплаву достичь и увеличить эффект подавления поглощения водорода (эффект предотвращения водородного охрупчивания) и улучшенной коррозионной стойкости по сравнению с титановым сплавом, содержащим только цирконий и гафний, а также способствует повышению технологической пластичности сплава.
Цирконий представляет собой существенный компонент титанового сплава по настоящему изобретению, и в этом титановом сплаве содержится в количестве 3,0-5,0% по массе, по той причине, что когда его содержание составляет менее чем 3,0% по массе, то нельзя получить удовлетворительный эффект подавления поглощения водорода, а когда его содержание составляет более чем 5,0% по массе, то может ухудшиться такая характеристика, как легковесность (низкая плотность).
Сплав может выплавляться по общепринятой для серийных титановых сплавов технологии методом тройного переплава в вакуумно-дуговых печах, в том числе и гарнисажных.
Для экспериментальной проверки заявляемого состава методом тройного переплава в вакуумно-дуговой печи были выплавлены несколько композиций сплава в виде слитков, из которых были изготовлены свободной ковкой прутки ⌀16 мм, которые затем были отожжены при температуре 800°С в течение 1 часа с последующим охлаждением на воздухе. Из прутков были изготовлены образцы для механических испытаний при комнатной и повышенной температурах, а также для оценки жаростойкости на дериватографе по максимальной температуре, до которой не наблюдалось окисления металла (по привесу).
В таблице 1 представлены результаты проведенных испытаний на растяжение, ударный изгиб, длительную прочность, ползучесть и жаростойкость разработанной композиции, с различным уровнем легирования, в том числе более низким и более высоким. Для сравнения приведены свойства сплава-прототипа.
Из таблицы 1 следует, что жаропрочный псевдо α-сплав мартенситного класса предлагаемого состава (3-5) заметно превосходит известный титановый сплав (прототип) по уровню прочностных и жаропрочных характеристик при комнатной и повышенной температурах. Максимальная температура нагрева без окисления 830-900°С. Одновременно сплав обеспечивает достаточно высокий уровень пластических и вязких свойств, что обуславливает его надежную работу в высоконагруженных конструкциях.
Кроме того, исходя из фазового состава сплава, на основе опыта использования подобного типа сплавов в промышленности можно ожидать, что сплав является свариваемым.
Результаты проведенных испытаний сплавов представлены в таблице.
Из таблицы видно, что предлагаемый сплав заметно превосходит известные титановые сплавы по уровню прочности и жаропрочности при температуре до 800°С. Одновременно сплав обеспечивает достаточно высокий уровень пластических и вязких свойств, что обуславливает его надежную работу в высоконагруженных конструкциях.
Использование заявленного технического решения позволит:
- снизить весовые характеристики узлов изделий, работающий при температурах ≥800°С, в 1,5-1,8 раза за счет замены высоконагруженных деталей из жаропрочных никелевых сплавов;
- обеспечить повышение надежности работы титановых изделий при температуре ≥800°С за счет исключения процесса проникающего окисления металла;
- оптимизировать технологию изготовления деталей и узлов, в том числе сварных, за счет возможности термической обработки на воздухе, исключив вакуумное и с защитной атмосферой термическое оборудование.
Таким образом, данное изобретение обеспечивает улучшение весовых характеристик за счет замены высоконагруженных деталей из жаропрочных никелевых сплавов, повышение прочности и сопротивление ползучести при отсутствии охрупчивания в процессе работы при повышенных температурах до 800°С. Кроме того, при реализации предлагаемого изобретения обеспечивается стабильная высокая жаростойкость и жаростойкость при повышенных температурах.
название | год | авторы | номер документа |
---|---|---|---|
ЖАРОПРОЧНЫЙ И ЖАРОСТОЙКИЙ ТИТАНОВЫЙ СПЛАВ | 2011 |
|
RU2471879C1 |
ЖАРОПРОЧНЫЙ ТИТАНОВЫЙ СПЛАВ | 2009 |
|
RU2396366C1 |
ПОРОШКОВЫЙ ВЫСОКОТЕМПЕРАТУРНЫЙ ИЗНОСОСТОЙКИЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ | 1993 |
|
RU2038401C1 |
ЖАРОПРОЧНЫЙ ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2022 |
|
RU2794496C1 |
СПЛАВ НА ОСНОВЕ ХРОМА И СПОСОБ ВЫПЛАВКИ СПЛАВА | 2016 |
|
RU2620405C1 |
ДЕФОРМИРУЕМЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ | 2019 |
|
RU2695097C1 |
Высокотемпературный гафнийсодержащий сплав на основе титана | 2017 |
|
RU2675063C1 |
ПРИПОЙ НА ОСНОВЕ ТИТАНА ДЛЯ ПАЙКИ СПЛАВА НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА НИОБИЯ | 2015 |
|
RU2600785C1 |
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ | 2008 |
|
RU2371502C1 |
ЖАРОПРОЧНЫЙ ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2022 |
|
RU2790495C1 |
Изобретение относится к области металлургии титановых сплавов и может быть использовано для изготовления деталей узлов ракетных двигателей, работающих в условиях высоких нагрузок при температурах до 800°С, в том числе длительное время. Жаропрочный и жаростойкий титановый сплав, содержащий, мас.%: алюминий 6,0-7,5, цирконий 3,0-5,0, вольфрам 6,0-7,5, гафний 2,5-4,0, ниобий 2,5-4,0, титан - остальное. Технический результат заключается в улучшении весовых характеристик изделий, в которых применяется заявляемый сплав, в обеспечении надежности работы изделий при температурах до 800°С в течение длительного времени, обеспечении высокой прочности и сопротивления ползучести при отсутствии охрупчивания в процессе работы. 1 з.п. ф-лы, 1 табл.
1. Жаропрочный и жаростойкий титановый сплав, содержащий алюминий, цирконий, вольфрам, гафний, титан, отличающийся тем, что он дополнительно содержит ниобий при следующем соотношении компонентов, мас.%:
2. Жаропрочный и жаростойкий титановый сплав по п.1, отличающийся тем, что получен методом тройного вакуумно-дугового переплава.
ЖАРОПРОЧНЫЙ ТИТАНОВЫЙ СПЛАВ | 2009 |
|
RU2396366C1 |
JP 08120373 A, 14.05.1996 | |||
ВЗРЫВОУСТОЙЧИВАЯ ПЕРЕМЫЧКА | 2000 |
|
RU2190100C2 |
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ ТИТАНА | 1991 |
|
SU1804139A1 |
Авторы
Даты
2013-01-10—Публикация
2011-12-14—Подача