Предлагаемое изобретение относится к области металлургии и может быть использовано в авиакосмической отрасли для получения жаропрочного коррозионностойкого сплава на основе никеля, используемого для изготовления изделий методом порошковой металлургии, работающего в агрессивных средах длительное время при температурах 550-800°С.
Известен жаропрочный коррозионностойкий сплав на основе никеля марки RR 1000, содержащий (мас.%): углерод 0,12-0,033; бор 0,01-0,025; цирконий 0,05-0,07; гафний 0,5-1,0; хром 14,35-15,15; кобальт 14,0-19,0; молибден 4,25-5,25; алюминий 2,85-3,15; титан 3,45-4,15; тантал 1,35-2,15; никель - остальное (Patent US 5897718, МПК С22С 19/05, 1999 г.)
Недостатком известного сплава является невысокий уровень коррозионностойкости в агрессивной среде, низкая жаропрочность сплава при 750°С на базах 100 и 1000 часов и, как следствие, низкий ресурс работоспособности изделий, изготовленных из этого сплава.
Известен сплав следующего состава (мас.%): углерод 0,03-0,1; бор 0,01-0,1; цирконий 0-0,6; хром 10,0-14,0; кобальт 14,0-22,0; молибден 2,0-6,0; алюминий 3,0-5,0; титан 3,0-5,0; тантал 0,5-6,0; никель - остальное (Patent US 5662749, МПК С22С 1/04,1997 г.), прототип.
Недостатком этого сплава является его низкая коррозионная стойкость и жаропрочность и, как следствие, недостаточный ресурс изделий, изготовленных из этого сплава.
Предлагается сплав на основе никеля следующего состава (мас.%):
при этом суммарное содержание титана и алюминия должно составлять 8,8-9,1 мас.% при отношении титана к алюминию, равном 1,32-1,36, а суммарное содержание гафния и ниобия составлять 0,25-0,35 мас.%.
Технический результат - повышение жаропрочности и коррозионной стойкости и, как следствие, повышение ресурса службы изделий, изготовленных из этого сплава.
Предложенный сплав имеет повышенное количество упрочняющей γ'-фазы и повышенную температуру ее растворения (1206°C) по сравнению со сплавом-прототипом. Увеличение содержания упрочняющей γ'-фазы приводит к торможению диффузионных процессов, протекающих в сплаве, меняет характер перемещения дислокаций по границам раздела фаз. Повышение температуры растворения упрочняющей γ'-фазы позволяет повысить сопротивление ползучести сплава и тем самым повысить его жаропрочность.
Предложенный сплав имеет высокую структурную стабильность (mis-mash), в нем отсутствуют нежелательные σ - и η-фазы, которые ведут к разупрочнению сплава в процессе его высокотемпературной эксплуатации.
Высокая структурная стабильность предлагаемого сплава обеспечивает снижение скорости диффузии продуктов сгорания топлива в объем металла и тем самым повышает коррозионную стойкость сплава при его работе в агрессивной среде.
Пример
На вакуумно-индукционной печи были сделаны две плавки массой 20 кг каждая с расчетным содержанием легирующих элементов, соответствующим химическому составу сплава-прототипа и предлагаемого сплава. В таблице 1 представлен химический состав полученных сплавов.
прототип
мый сплав
Затем от полученных плавок были отобраны заготовки и переплавлены в порционной вакуумно-индукционной печи с заливкой блока образцов. Были изготовлены образцы из полученного блока и проведены испытания сплавов на жаропрочность при температуре 750°С. Одновременно были изготовлены образцы для определения объема упрочняющей γ'-фазы, температуры растворения γ'-фазы, наличия нежелательных σ - и η-фаз, структурной стабильности и коррозионной стойкости сплавов.
Полученные результаты исследований представлены в таблице 2.
стика
Стабильность
сплава Mdγ,
наличие σ- и η-фаз
прототип
мый сплав
Как видно из таблицы, предлагаемый состав сплава позволяет повысить жаропрочность на 4,5-6,5% и коррозионностойкость на 80-85% по сравнению со сплавом-прототипом.
Таким образом, предложенный сплав позволит повысить жаропрочность и коррозионностойкость сплава и тем самым увеличит срок службы на 15-20% изделий, используемых в авиакосмической технике в агрессивных средах при температуре 550-800°С.
название | год | авторы | номер документа |
---|---|---|---|
Порошковые жаропрочные сплавы для изготовления биметаллических изделий и составной диск, изготовленный из этих сплавов | 2016 |
|
RU2676121C2 |
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ЛИТЬЯ РАБОЧИХ ЛОПАТОК ГАЗОТУРБИННЫХ УСТАНОВОК | 2018 |
|
RU2678352C1 |
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ЛИТЬЯ ДЕТАЛЕЙ ГОРЯЧЕГО ТРАКТА ГАЗОТУРБИННЫХ УСТАНОВОК | 2013 |
|
RU2519075C1 |
Жаропрочный никелевый сплав | 2019 |
|
RU2697674C1 |
Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него | 2018 |
|
RU2672463C1 |
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ЛИТЬЯ РАБОЧИХ ЛОПАТОК ГАЗОТУРБИННЫХ УСТАНОВОК | 2013 |
|
RU2525883C1 |
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ИЗГОТОВЛЕНИЯ И РЕМОНТА ЛОПАТОК ГАЗОТУРБИННЫХ УСТАНОВОК | 2014 |
|
RU2564653C1 |
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ЛИТЬЯ СОПЛОВЫХ ЛОПАТОК ГАЗОТУРБИННЫХ УСТАНОВОК | 2017 |
|
RU2636338C1 |
Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него | 2018 |
|
RU2690623C1 |
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ КОТЛОВ И ПАРОВЫХ ТУРБИН, РАБОТАЮЩИХ ПРИ УЛЬТРАСВЕРХКРИТИЧЕСКИХ ПАРАМЕТРАХ ПАРА | 2017 |
|
RU2637844C1 |
Изобретение относится к области металлургии и может быть использовано в авиакосмической отрасли для получения жаропрочного коррозионного сплава на основе никеля для изготовления изделий, работающего в агрессивных средах длительное время при температурах 550-800°С. Предложен жаропрочный сплав на основе никеля. Сплав содержит, мас.%: углерод 0,025-0,035, бор 0,015-0,025, цирконий 0,015-0,025, хром 11,2-11,5, кобальт 14,7-15,0, молибден 3,3-3,5, алюминий 3,75-3,95, титан 5,0-5,2, тантал 1,9-2,1, вольфрам 0,5-0,7, ниобий 0,05-0,25, гафний 0,15-0,25, марганец 0,10-0,20, никель - остальное. Суммарное содержание титана и алюминия составляет 8,8-9,1 мас.%, отношение титана к алюминию составляет 1,32-1,36 мас.%, а суммарное содержание гафния и ниобия составляет 0,25-0,35 мас.%. 2 табл.
Жаропрочный сплав на основе никеля, содержащий углерод, бор, цирконий, хром, кобальт, молибден, алюминий, титан, тантал, отличающийся тем, что он дополнительно содержит вольфрам, ниобий, гафний, марганец при следующем соотношении компонентов, мас.%:
при этом суммарное содержание титана и алюминия составляет 8,8-9,1 мас.%,
отношение титана к алюминию составляет 1,32-1,36 мас.%,
а суммарное содержание гафния и ниобия составляет 0,25-0,35 мас.%.
US 5662749 А, 02.09.1997 | |||
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ | 1998 |
|
RU2131944C1 |
RU 2005117714 A, 20.12.2006 | |||
СПОСОБ ПОЛУЧЕНИЯ АЗОКРАСЙТЁЛЕЙ | 0 |
|
SU298127A1 |
JP 10046278 A, 17.02.1998. |
Авторы
Даты
2009-10-27—Публикация
2008-05-14—Подача