СПОСОБ СЕЛЕКТИВНОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ АММИАКА И ЕГО ПРОИЗВОДНЫХ В ГАЗОВОЙ СРЕДЕ Российский патент 2013 года по МПК G01N27/02 

Описание патента на изобретение RU2473893C1

Изобретение относится к области аналитического приборостроения, а именно к сенсорам концентрации газов, и предназначено для селективного определения концентрации аммиака и некоторых его производных (например, гидразина и несимметричного диметилгидразина), и может быть использовано для медицинской диагностики, для экологического мониторинга в химической, нефтехимической, металлургической, холодильной, пищевой, электронной, авиакосмической и некоторых других областях промышленности.

Известен способ определения концентрации аммиака с помощью полупроводникового металлоксидного сенсора, при котором аналитическим сигналом является изменение значения электрического сопротивления сенсора (Б.Эггинс. Химические и биологические сенсоры. М., Техносфера, 2005. С.66-67).

Главный недостаток известного способа - недостаточная селективность. Все газы-восстановители (аммиак, угарный газ, водород, метан, сероводород, этанол и так далее) уменьшают сопротивление полупроводника n-типа в результате хемосорбции (донорный сигнал) и поэтому трудноотличимы при использовании полупроводниковых сенсоров. Второй недостаток данного способа - недостаточная стабильность, вызванная дрейфом электрического сопротивления сенсора.

Задача изобретения - разработка способа определения аммиака и его производных с использованием полупроводниковых сенсоров.

Технический результат от использования изобретения - увеличение селективности и стабильности анализа.

Технический результата достигается тем, что в способе определения концентрации аммиака и его производных в газовой среде, включающем измерение электрического сопротивления полупроводникового сенсора, аммиак и/или его производные превращают в оксиды азота с помощью конвертера.

Сущность способа заключается в следующем. Полупроводниковый сенсор находится в одной газовой камере вместе с конвертером - устройством, способным каталитически окислять аммиак или его производные:

4NH3+5O2→4NO+6H2O,

2NO+O2→2NO2.

Оксиды азота, в отличие от аммиака, не уменьшают, а увеличивают сопротивление полупроводника n-типа в результате хемосорбции (акцепторный сигнал).

В качестве конвертера может быть использована, например, подогреваемая трубка, наполненная катализатором, или подогреваемая пластинка с нанесенным на нее слоем катализатора. Конвертер может работать в стационарном режиме (то есть непрерывно находиться при температуре, обеспечивающей каталитическое превращение) или в нестационарном режиме (температура конвертера, обеспечивающая каталитическое превращение, сменяется температурой, при которой каталитическое превращение не протекает).

На фиг.1 изображена схема устройства для селективного определения концентрации аммиака и его производных в газовой среде; на фиг.2 показаны результаты измерений электрического сопротивления газового сенсора от времени; на фиг.3 показана градуировочная кривая - зависимость отклика газового сенсора от концентрации аммиака.

Пример осуществления способа.

Способ селективного определения концентрации аммиака и его производных в воздухе был реализован в устройстве, включающем полупроводниковый сенсор 1 и конвертер 2, которые находятся в одной камере 3, связанной с внешней средой через отверстие 4.

Использовался сенсор, обладающий повышенной чувствительностью к диоксиду азота и к аммиаку, имеющий состав 96% SnO2, 2% Sb, 2% La. Сенсор находится в стационарном температурном режиме (250°С). В качестве конвертера была использована диэлектрическая пластинка с нанесенным на нее слоем катализатора, имеющая встроенный нагревательный элемент. На поверхность пластинки нанесен слой катализатора, обладающий способностью превращать аммиак в оксиды азота (например, 96% SnO2, 3% Pd, 1% Pt). Конвертер находится в нестационарном температурном режиме, что обеспечивается включением и выключением тока на нагревательном элементе. При нагреве температура конвертера достигает 350°С. Исследуемая газовая среда попадает в камеру через отверстие.

На фиг.2 показана зависимость электрического сопротивления сенсора от времени на воздухе (кривая 1), при концентрации аммиака 4,5 ppm (кривая 2), концентрации аммиака 9 ppm (кривая 3). Стрелками показаны моменты включения и выключения тока на конвертере. При нагревании конвертера поступающий из атмосферы аммиак окисляется до оксидов азота, которые определяются сенсором как окислители, при этом электрическое сопротивление полупроводникового сенсора n-типа увеличивается (линии 2 и 3 на фиг.2). При охлаждении конвертера оксиды азота перестают вырабатываться, уходят из камеры через отверстие. Сопротивление сенсора понижается (линии 2 и 3 на фиг.2) вследствие ухода оксидов азота и поступления аммиака. Чередование повышения и понижения сопротивления сенсора соответственно при нагревании и при охлаждении конвертера является отличительной особенностью определения аммиака и его производных, что позволяет проводить их селективный анализ. Например, при анализе воздуха (линия 1 на фиг.2) нагревание конвертера приводит не к повышению сопротивления сенсора, а к его понижению.

Преимуществом данного метода является также возможность повышения чувствительности анализа, так как оксиды азота, и особенно диоксид азота, имеет более высокий отклик по сравнению с аммиаком при их определении полупроводниковыми сенсорами.

Преимуществом данного метода является повышение стабильности анализа, так как аналитический сигнал может определяться по отношению, по разности или по относительной разности между сопротивлением сенсора в момент охлаждения конвертера и в момент нагревания конвертера, а не по абсолютному значению электрического сопротивления. В этом случае сравнивают между собой донорный сигнал аммиака и акцепторный сигнал оксидов азота. Таким образом, влияние дрейфа электропроводности, существенное при измерении абсолютного значения электрического сопротивления, сводится к минимуму.

В качестве аналитического сигнала была использована относительная разность значений электрического сопротивления сенсора в различные моменты времени. Одно измерение сопротивления (R1) проводилось за 5 секунд до включения нагревателя на конвертере (момент включения нагревания показан стрелочкой на фиг.2). Второе измерение сопротивления (R2) проводилось спустя 15 секунд после включения нагревателя на конвертере. Моменты регистрации сопротивлений R1 и R2 показаны крестиками на фиг.2. Аналитический сигнал G определяли по формуле:

.

Концентрацию аммиака определяли по градуировочной кривой фиг.3.

Похожие патенты RU2473893C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА 1995
  • Рябцев Станислав Викторович
  • Шапошник Алексей Владимирович
RU2096775C1
СПОСОБ СЕЛЕКТИВНОГО ОПРЕДЕЛЕНИЯ АЦЕТОНА В ВОЗДУХЕ 2007
  • Шапошник Алексей Владимирович
  • Звягин Алексей Алексеевич
  • Юкиш Виктор Алексеевич
  • Рябцев Станислав Викторович
  • Домашевская Эвелина Павловна
RU2377551C2
ПЬЕЗОГРАВИМЕТРИЧЕСКИЙ СЕНСОР КОНЦЕНТРАЦИИ ГАЗОВ 2007
  • Шапошник Алексей Владимирович
  • Звягин Алексей Алексеевич
  • Юкиш Виктор Алексеевич
  • Рябцев Станислав Викторович
  • Домашевская Эвелина Павловна
  • Котов Владимир Васильевич
RU2378643C2
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ВОДОРОДА В ПРИСУТСТВИИ ГАЗООБРАЗНЫХ ПРИМЕСЕЙ 2008
  • Васильев Алексей Андреевич
  • Соколов Андрей Владимирович
  • Самотаев Николай Николаевич
RU2371709C1
АМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ АММИАКА В АЗОТЕ 2015
  • Калякин Анатолий Сергеевич
  • Демин Анатолий Константинович
  • Волков Александр Николаевич
RU2583162C1
ПЬЕЗОГРАВИМЕТРИЧЕСКИЙ СЕНСОР КОНЦЕНТРАЦИИ ТОЛУОЛА 2007
  • Шапошник Алексей Владимирович
  • Звягин Алексей Алексеевич
  • Юкиш Виктор Алексеевич
  • Рябцев Станислав Викторович
  • Домашевская Эвелина Павловна
  • Котов Владимир Васильевич
RU2376590C2
ДАТЧИК ДЛЯ ОПРЕДЕЛЕНИЯ ГИДРИДОВ АЗОТА И ИХ ПРОИЗВОДНЫХ В ГАЗОВЫХ СРЕДАХ НА ОСНОВЕ ПЛЕНОК ГАЛОГЕНИРОВАННЫХ МЕТАЛЛОКОМПЛЕКСОВ ПОРФИРИНОВ 1998
  • Маслов Л.П.
  • Румянцева В.Д.
  • Кульберг С.Б.
  • Ермуратский П.В.
  • Миронов А.Ф.
RU2172487C2
Способ изготовления материала люминесцентного сенсора и устройство люминесцентного сенсора для анализа кислых и основных компонентов в газовой фазе 2017
  • Максимова Елена Юрьевна
  • Алексеенко Антон Владимирович
  • Павлов Александр Валерьевич
  • Павлов Сергей Алексеевич
  • Павлов Алексей Сергеевич
RU2758182C2
Газовый сенсор и газоаналитический мультисенсорный чип на основе графена, функционализированного карбонильными группами 2020
  • Рабчинский Максим Константинович
  • Варежников Алексей Сергеевич
  • Рыжков Сергей Александрович
  • Байдакова Марина Владимировна
  • Шнитов Владимир Викторович
  • Брунков Павел Николаевич
  • Соломатин Максим Андреевич
  • Емельянов Алексей Владимирович
  • Сысоев Виктор Владимирович
RU2745636C1
СПОСОБ КАЛИБРОВКИ ПОЛУПРОВОДНИКОВЫХ СЕНСОРОВ ГАЗА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Евстигнеев Михаил Викторович
  • Киселёв Юрий Михайлович
  • Попов Сергей Леонидович
  • Соколов Андрей Владимирович
  • Харламочкин Евгений Сергеевич
RU2523089C2

Иллюстрации к изобретению RU 2 473 893 C1

Реферат патента 2013 года СПОСОБ СЕЛЕКТИВНОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ АММИАКА И ЕГО ПРОИЗВОДНЫХ В ГАЗОВОЙ СРЕДЕ

Изобретение может быть использовано для медицинской диагностики, для экологического мониторинга в химической, нефтехимической, металлургической, холодильной, пищевой, электронной, авиакосмической и некоторых других областях промышленности. В способе селективного определения концентрации аммиака и его производных в газовой среде, включающем измерение электрического сопротивления полупроводникового сенсора, аммиак и его производные превращают в оксиды азота с помощью конвертера. Изобретение обеспечивает увеличение селективности и стабильности анализа. 3 ил.

Формула изобретения RU 2 473 893 C1

Способ селективного определения концентрации аммиака и его производных в газовой среде, включающий измерение электрического сопротивления полупроводникового сенсора, отличающийся тем, что аммиак и его производные превращают в оксиды азота с помощью конвертера.

Документы, цитированные в отчете о поиске Патент 2013 года RU2473893C1

US 2009308747 A1, 17.12.2009
JP 2001133447 A, 18.05.2001
JP 2000214128 A, 04.08.2000
JP 2008216186 A, 18.09.2008
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА 1995
  • Рябцев Станислав Викторович
  • Шапошник Алексей Владимирович
RU2096775C1
ДАТЧИК ДЛЯ ОПРЕДЕЛЕНИЯ ДИОКСИДА АЗОТА, АММИАКА И ВОДЫ 1993
  • Москалев П.Н.
  • Седов В.П.
RU2065158C1

RU 2 473 893 C1

Авторы

Шапошник Алексей Владимирович

Рябцев Станислав Викторович

Звягин Алексей Алексеевич

Васильев Алексей Андреевич

Даты

2013-01-27Публикация

2011-05-20Подача