Изобретение относится к подшипникам скольжения и может быть использовано в авиационной, газонефтедобывающей, автомобильной и других областях промышленности.
Подшипники скольжения находят широкое применение в узлах и механизмах, имеющих высокие скорости вращения и большие удельные нагрузки. Подшипники скольжения, как опора вала или вращающейся оси, воспринимают от них радиальные, осевые и радиально-осевые нагрузки и обеспечивают вращение.
Подшипник скольжения включает корпус, устанавливаемый на цапфу вала или ось непосредственно или через вкладыш или втулку, и содержит сопряженные поверхности, между которыми возникает трение.
Известен подшипник скольжения, включающий взаимосвязанные между собой и смонтированные на корпусе элементы скольжения, выполненные в виде набора контактирующих между собой вкладышей с установочными фиксаторами (свидетельство на полезную модель РФ №24058, опубл. 10.09.2002). Вкладыши могут быть выполнены из различных металлополимеров, керамополимеров и композиционных материалов с различными упрочняющими добавками, что улучшает их антифрикционные свойства.
Известно техническое решение в виде листового армированного фторопластового антифрикционного материала для изготовления подшипника скольжения, опорных шайб, опор скольжения (патент РФ №2384412, МПК В32В 5/0, опубл. 20.03.2010).
Известный материал не обладает высокой прочностью и стабильностью геометрических характеристик поверхности трения в широком диапазоне рабочих температур и требует изготовления подшипника скольжения только методом штамповки, что ограничивает его возможности.
Известна жаростойкая система покрытия, содержащая множество керамических частиц микронного размера из керамического оксида, керамического карбида, или керамического нитрида, или керамического борида, или силицида металла, или керамического оксикарбида, или керамического оксинитрида и углерода, которая расположена на поверхности спроектированного компонента, выбранного из группы, состоящей из компонента газовой турбины, компонента авиационного двигателя, компонента двигателя внутреннего сгорания и компонента режущего инструмента (патент РФ №2352686, опубл. 20.04.2009). Наиболее близким к предложенному является подшипник скольжения, содержащий корпус, имеющий цилиндрическое отверстие, устанавливаемое на вал или ось непосредственно или через вкладыш или втулку, который при установке образует сопряженные поверхности, в которых при скольжении происходит трение, при этом, по меньшей мере, одна из сопряженных поверхностей имеет антифрикционное покрытие в виде пленочного наноструктурированного дисперсно-упрочненного карбида кремния (патент РФ №99558, МПК F16C 33/04, опубл. 20.11.2010).
Данное антифрикционное покрытие в виде пленочного наноструктурированного дисперсно-упрочненного карбида кремния позволяет получить подшипники скольжения с коэффициентом трения 0,025, что во много раз ниже известных, однако, данное покрытие ограниченно может быть использовано при скоростях вращения порядка 50-60 тыс. об/мин и при высоких динамических нагрузках из-за низкой пластичности материала.
Известные технические решения используют покрытия, улучшающие какое-либо одно свойство подшипника - как-то антифрикционные, жаростойкие, износостойкие и т.п.
Подшипники скольжения с покрытиями, которые бы комплексно улучшали эксплуатационные характеристики подшипников скольжения, не выявлены.
В основу изобретения положена задача комплексного улучшения эксплуатационных характеристик подшипников скольжения с упором на максимальное снижение коэффициента трения.
Технический результат изобретения - комплексное улучшение эксплуатационных характеристик подшипника за счет максимального снижения коэффициента трения, повышения износостойкости, твердости, термической стабильности, жаропрочности, при одновременном повышении пластичности и прочности карбида кремния (SiC) путем его наноструктурирования.
Поставленная задача решается тем, что в подшипнике скольжения, включающем корпус и установленный на корпусе, по меньшей мере, один элемент скольжения, по меньшей мере, поверхности скольжения которых имеют наноструктурированное керамическое покрытие, выполненное из порошка карбида кремния с фракциями: нанодиапазона - от 50 до 100 нм, субмикронного уровня - от 0,2 до 0,5 мкм и микронного уровня - от 1 до 10 мкм, при содержании фракций, мас.%: фракции нанодиапазона 40-60, субмикронного уровня 30-40 и микронного уровня 10-20.
Для изготовления подшипника скольжения с наноструктурированным керамическим покрытием, согласно изобретению, порошок карбида кремния измельчают до наноструктурных размеров известным образом, например вихревым виброакустическим методом (см. Федеральный интернет-портал «Нанотехнологии и наноматериалы», сайт http://portalnano.ru). Полученный порошок карбида кремния для создания наноструктуры рассеивают по фракциям: нанодиапазона - от 50 до 100 нм, субмикронного уровня - от 0,2 до 0,5 мкм и микронного уровня - от 1 до 10 мкм, при этом фракции смешивают в соотношении: нанодиапазона от 40 до 60 мас.%, субмикронного уровня от 30 до 40 мас.%, микронного уровня от 10 до 20%.
Полученный материал в виде порошка наносят на поверхность известными методами: или холодного газодинамического напыления, или газодетанционного напыления, или ионно-инплантантного магнетронного напыления. Толщина слоя полученного покрытия может варьироваться в зависимости от назначения от 0,5 мкм до 500 мкм.
Наноструктурированное керамическое покрытие не требует дополнительной физико-химической обработки (лазер, ультразвук, травление в кислотах и др).
Наноструктурированное керамическое покрытие, согласно изобретению, на основе наноструктурного карбида кремния (SiC) позволяет получить подшипники скольжения с коэффициентом трения - 0,011-0,015, модулем упругости покрытия около 400 ГПа, твердостью 90-92 (HRc), прочностью 1800 МПа. Стабильность свойств зафиксирована в диапазоне рабочих температур от -50ºС до +1300ºС.
Свойства материала наноструктурного антифрикционного керамического покрытия подшипника скольжения в зависимости от наноструктуры и процентного содержания ингредиентов представлены в таблице 1.
материала
Si3N4 8%
Si3N4 7%
Si3N4 8%
При разработке подшипника скольжения обычно учитывается назначение узла трения путем установления влияния определяющего параметра на коэффициент трения и интенсивность изнашивания, и в соответствии с этим покрытия соответственно являются антифрикционными, жаростойкими, износостойкими и т.п.
Снижение коэффициента трения до 0,011-0,015 подтверждает, что заявленное покрытие является антифрикционным.
Стабилизация свойств в указанном интервале температур (от -50ºС до +1300ºС) и достижение указанной +1300ºС показывает, что это заявленное покрытие является жаропрочным покрытием.
Стабильность свойств в диапазоне рабочих температур от -50ºС до +1300ºС подтверждает термическую стабильность заявленного покрытия.
Как видно из представленных данных, покрытие, согласно изобретению, имеет высокую прочность (1800 МПа) при модуле упругости (400 ГПа), что позволяет подшипнику скольжения противостоять изнашиванию. Коэффициент увеличения износостойкости в сравнении со сталью равен 20.
Таким образом, заявленное наноструктурное керамическое покрытие комплексно улучшает эксплуатационные свойства подшипников, в особенности его антифрикционные свойства.
Подшипник скольжения, согласно изобретению, в целом позволяет увеличить долговечность подшипника в несколько раз и использовать его для различных узлов и механизмов, работающих в широком температурном диапазоне с высокими осевыми и радиальными нагрузками.
название | год | авторы | номер документа |
---|---|---|---|
ПОДШИПНИК СКОЛЬЖЕНИЯ С НАНОСТРУКТУРНЫМ МЕТАЛЛОКЕРАМОМАТРИЧНЫМ АНТИФРИКЦИОННЫМ ПОКРЫТИЕМ | 2012 |
|
RU2485365C1 |
ПОДШИПНИК СКОЛЬЖЕНИЯ С НАНОСТРУКТУРНЫМ ФУНКЦИОНАЛЬНО-ГРАДИЕНТНЫМ АНТИФРИКЦИОННЫМ ПОКРЫТИЕМ | 2014 |
|
RU2578840C1 |
ЭНЕРГОСБЕРЕГАЮЩИЙ ПОДШИПНИК СКОЛЬЖЕНИЯ | 2011 |
|
RU2477395C1 |
Цилиндропоршневая группа двигателя внутреннего сгорания | 2016 |
|
RU2637794C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ СПЛАВОВ СИСТЕМЫ Sn-Sb-Cu И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2014 |
|
RU2585588C1 |
Способ напыления градиентного покрытия на основе композиционного порошка системы Al:SiN:SiAlON | 2021 |
|
RU2785506C1 |
Радиальные уплотнения роторно-поршневого двигателя внутреннего сгорания | 2020 |
|
RU2741176C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ АНТИФРИКЦИОННОГО НАЗНАЧЕНИЯ ДЛЯ РАБОТЫ В УСЛОВИЯХ ОГРАНИЧЕННОЙ СМАЗКИ | 2000 |
|
RU2171307C1 |
КЕРАМИЧЕСКИЙ НАНОСТРУКТУРИРОВАННЫЙ МАТЕРИАЛ НА ОСНОВЕ НИТРИДА КРЕМНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2016 |
|
RU2653182C2 |
НАНОСТРУКТУРИРОВАННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ КАРБИДА БОРА И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2016 |
|
RU2621241C1 |
Изобретение относится к подшипникам скольжения и может быть использовано в авиационной, газонефтедобывающей, автомобильной и других областях промышленности. Подшипник скольжения включает корпус и установленный на корпусе, по меньшей мере, один элемент скольжения, по меньшей мере, поверхности скольжения которых имеют наноструктурированное керамическое покрытие, выполненное из порошка карбида кремния с фракциями: нанодиапазона - от 50 до 100 нм, субмикронного уровня - от 0,2 до 0,5 мкм и микронного уровня - от 1 до 10 мкм, при содержании фракций, мас.%: фракции нанодиапазона 40-60, субмикронного уровня 30-40 и микронного уровня 10-20. Технический результат: комплексное улучшение эксплуатационных характеристик подшипника за счет максимального снижения коэффициента трения, повышения износостойкости, твердости, термической стабильности, жаропрочности, при одновременном повышении пластичности и прочности антифрикицонного керамического слоя за счет его наноструктурирования. 1 табл.
Подшипник скольжения, включающий корпус и установленный на корпусе, по меньшей мере, один элемент скольжения, по меньшей мере, поверхности скольжения которых имеют наноструктурированное керамическое покрытие, выполненное из порошка карбида кремния с фракциями: нанодиапазона - от 50 до 100 нм, субмикронного уровня - от 0,2 до 0,5 мкм и микронного уровня - от 1 до 10 мкм, при содержании фракций, мас.%: фракции нанодиапазона 40-60, субмикронного уровня 30-40 и микронного уровня 10-20.
Смеситель для сенсмостанций | 1952 |
|
SU99558A1 |
Плавучий грунтопровод к землесосному снаряду | 1956 |
|
SU109242A1 |
СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ТРУЩИХСЯ ПОВЕРХНОСТЯХ | 2007 |
|
RU2357123C2 |
Аксиально-поршневая пневмогидрома-шиНА | 1979 |
|
SU850898A1 |
Авторы
Даты
2013-02-27—Публикация
2011-11-01—Подача