Изобретение относится к области определения физико-химических свойств веществ и материалов, в частности н-алканов.
Правильное и быстрое определение комплекса физико-химических свойств (ФХС) вещества, основанное на результатах прямого измерения, резко сокращает время и повышает точность технических расчетов; делает возможным создание продуктов с заданными свойствами. Может быть эффективно использовано в компьютерных моделях производств нефтепереработки, нефтехимии и химической технологии.
В работах [Доломатов М.Ю. Применение электронной спектроскопии в физико-химии многокомпонентных стохастических и сложных молекулярных систем. - Уфа: ЦНТИ, 1989. - 47 с.; Мукаева Г.Р., Доломатов М.Ю. Спектроскопический контроль свойств, органических веществ и материалов по корреляциям свойство - коэффициент поглощения. // Журнал прикл. спектроскопии. - 1998. - т.65. - №3 - с.438-440; Доломатов М.Ю., Мукаева Г.Р. Способ определения потенциала ионизации и сродства к электрону атомов и молекул методом электронной спектроскопии // Журнал прикладной спектроскопии. - 1992. - Т.56, №4. - С.570-574] установлены закономерности взаимосвязи ФХС и энергии ионизации (первых потенциалов ионизации (ПИ)) веществ с интегральными характеристиками их электронных спектров. В работе [Дезорцев С.В, Доломатов М.Ю., Хабирова А.Р. О связи первых потенциалов ионизации н-алканов с их физико-химическими свойствами // Башкирский химический журнал. - 2011. - т.18, №1. - с.83-85] установлено наличие связи ФХС н-алканов C1-C10 с их ПИ. Таким образом, показано существование взаимосвязи между ФХС и первыми ПИ веществ. Наиболее точным методом прямого измерения энергии ионизации (ПИ) является фотоэлектронная спектроскопия.
Как известно, первый ПИ химических соединений связан с энергией высшей занятой молекулярной орбитали (ЕВЗМО) [Травень В.Ф. Электронная структура и свойства органических молекул. - М.: Химия. - 1989. - 384 с.]. В соответствии с теорией молекулярных орбиталей значениями энергий высшей занятой молекулярной орбитали (ЕВЗМО), низшей свободной молекулярной орбитали (ЕНСМО) и шириной энергетической щели (расстоянием между высшей занятой и низшей свободной молекулярными орбиталями) определяется электронная структура вещества [Травень В.Ф. Электронная структура и свойства органических молекул. - М.: Химия. - 1989. - 384 c.].
Известен способ определения энергии межатомных взаимодействий ван-дер-ваальсовых систем (RU 2361189, оп. 10.07.2009, МПК G01N 13/00), основанный на установлении зависимости энергии межатомного взаимодействия от расстояния между атомами. Измеряют радиус атома, определяющий наибольшее расстояние внешних электронов по отношению к ядру, и ван-дер-ваальсов радиус атома, равный половинному расстоянию между ядрами ближайших атомов вещества в конденсированном состоянии. По известным соотношениям рассчитывают зависимость энергии межатомного взаимодействия от расстояния между атомами, представленную потенциальной функцией по определенной формуле. Недостатком известного способа является большой объем вычислений.
Известно устройство и способ определения комплекса физико-химических свойств многокомпонентных высокомолекулярных веществ (заявка RU 95103839 A1, оп. 27.12.1996, МПК G01N 21/25) методом электронной абсорбционной спектроскопии. Способ заключается в том, что измеряют оптические плотности при фиксированных аналитических длинах волн, определяют коэффициенты поглощения и о свойствах веществ судят по известным закономерностям для многокомпонентных высокомолекулярных систем и для атомарных и молекулярных систем.
Недостатками известного способа являются необходимость подбора растворителя и подходящей концентрации раствора, а также ограниченный набор физико-химических свойств, для которых определены характеристические длины волн.
При создании изобретения ставилась задача определения основных физико-химических свойств веществ, в частности, н-алканов на основе одного интегрального показателя, определяемого прямым измерением, что позволит сократить расходы на анализы, уменьшить затраты рабочего времени, получать продукты с заданными свойствами.
Вышеуказанная задача решается способом определения комплекса физико-химических свойств веществ методом спектроскопии, в котором, согласно изобретению, проводят прямое измерение энергии ионизации (ПИ) методом фотоэлектронной спектроскопии, а затем рассчитывают значения соответствующих ФХС от энергии ионизации по эмпирическим зависимостям вида
где αi и βi - соответствующие эмпирические коэффициенты; Z - молекулярная масса, или температура кипения, или относительная плотность, или коэффициент преломления, или критическая температура, или теплота испарения; ПИ - значения энергии ионизации, определенные методом фотоэлектронной спектроскопии, эВ.
Предлагаемый способ реализуется следующим образом:
- сначала проводят измерение энергии ионизации (потенциала ионизации) методом фотоэлектронной спектроскопии;
- затем по выражению (1) с известными эмпирическими коэффициентами рассчитывают значения искомых физико-химических свойств при нормальных условиях (давление атмосферное, температура 293 К).
В рамках заявленного способа возможно решение обратной задачи - расчет средней эффективной энергии ионизации (потенциала ионизации) вещества. В этом случае будет наблюдаться следующий порядок действий:
- на первом этапе производят прямое измерение одного или нескольких физико-химических свойств;
- на втором этапе по выражению (1) с известными эмпирическими коэффициентами рассчитывают значения эффективной энергии ионизации (потенциала ионизации) при нормальных условиях (давление атмосферное, температура 293 К).
Данный способ имеет универсальное применение для прогнозирования свойств веществ и их эффективной энергии ионизации, в том числе при получении продуктов с заданными свойствами.
Ниже приведен пример реализации предлагаемого способа. Самым удобным объектом для примера являются углеводороды, поскольку для ряда н-алканов с числом атомов углерода от 1 до 10 комплекс физико-химических свойств изучен наиболее полно [Физико-химические свойства индивидуальных углеводородов /Под ред. проф. В.М.Татевского/. - М.: Гостоптехиздат. - 1960. - 412 с.].
Для любого н-алкана из ряда C1-C10 (от метана до н-декана) на первом этапе определяют эффективную энергию ионизации (потенциал ионизации) способом фотоэлектронной спектроскопии. На втором этапе по зависимости вида
где αi и βi - соответствующие эмпирические коэффициенты; Z - молекулярная масса, или температура кипения, или относительная плотность, или коэффициент преломления, или критическая температура, или теплота испарения; ПИ - значения энергии ионизации, определенные методом фотоэлектронной спектроскопии, эВ;
рассчитывают значения любого физико-химического свойства из таблицы 1, в которой приведены эмпирические коэффициенты зависимостей физико-химических свойств н-алканов C1-C10 от энергии ионизации (ПИ) и соответствующие коэффициенты корреляции.
В таблице 2 приведены справочные данные по энергиям ионизации углеводородов ряда н-алканов от метана до н-декана по данным [Веденеев В.И., Гурвич Л.В., Кондратьев В.Н. и др. Энергии разрыва химических связей. Потенциалы ионизации и сродство к электрону. Справочник. - М.: Издательство АН СССР. - 1975. - 215 с.]
Ниже приведен пример применения предлагаемого способа для н-гексана.
На первом этапе методом фотоэлектронной спектроскопии измерено значение энергии ионизации (ПИ) н-гексана. На втором этапе по соответствующему значению ПИ (таблица 2) проведен расчет физико-химических свойств.
Результаты расчетов приведены в таблице 3. Справочные данные по н-гексану взяты из [Физико-химические свойства индивидуальных углеводородов /Под ред. проф. В.М.Татевского/. - М.: Гостоптехиздат. - 1960. - 412 с.; Ахметов С.А., Гайсина А.Р. Моделирование и инженерные расчеты физико-химических свойств углеводородных систем: учеб. пособие. - СПб.: Недра, 2010. - 128 с.].
При анализе данных таблицы 3 наибольшее относительное отклонение от расчетного значения наблюдается для молекулярной массы и составляет 3,16%.
Таким образам, предлагаемый способ позволяет с достаточной точностью рассчитывать физико-химические свойства н-алканов по значению их энергии ионизации.
Преимуществами данного способа являются:
- расчет физико-химических свойств веществ на основании одного прямого измерения;
- экспрессность и достаточная для технических расчетов точность;
- возможность использования имеющихся данных по ФХС и ПИ для различных веществ;
- решение обратной задачи прогнозирования средней эффективной энергии ионизации вещества по известным значениям физико-химических свойств;
- использование серийно выпускаемого аналитического оборудования для фотоэлектронной спектроскопии.
Предлагаемый способ позволяет упростить процедуру определения ФХС веществ при решении технических задач и прогнозировать электронное строение материалов по имеющимся требованиям к их физико-химическим свойствам. При этом сокращаются затраты на реактивы, аналитическое оборудование. Метод может быть реализован одним специалистом.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ АСФАЛЬТЕНОВ | 2010 |
|
RU2439127C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ОКТАНОВОГО ЧИСЛА Н-АЛКАНОВ | 2014 |
|
RU2577290C1 |
СПОСОБ ПОЛУЧЕНИЯ АСФАЛЬТЕНОВ С УЛУЧШЕННЫМИ ЭЛЕКТРОННЫМИ ХАРАКТЕРИСТИКАМИ | 2014 |
|
RU2566377C1 |
Способ определения потенциала ионизации молекул полициклических ароматических углеводородов | 2016 |
|
RU2621470C1 |
Способ определения потенциала ионизации и сродства к электрону органических молекул кислород- и азотсодержащих соединений | 2017 |
|
RU2649243C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТЕНЦИАЛА ИОНИЗАЦИИ И СРОДСТВА К ЭЛЕКТРОНУ | 2009 |
|
RU2425357C2 |
Способ определения сродства к электрону молекул полициклических ароматических углеводородов | 2016 |
|
RU2658514C2 |
Способ определения эффективного потенциала ионизации и эффективного сродства к электрону многокомпонентных ароматических конденсированных сред | 2016 |
|
RU2621481C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ МНОГОКОМПОНЕНТНЫХ УГЛЕВОДОРОДНЫХ СИСТЕМ | 2013 |
|
RU2560709C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ШИРИНЫ ЗАПРЕЩЁННОЙ ЗОНЫ ОРГАНИЧЕСКИХ ПОЛУПРОВОДНИКОВ НА ОСНОВЕ ГЕТЕРОАТОМНЫХ СОЕДИНЕНИЙ | 2017 |
|
RU2668631C1 |
Изобретение относится к области определения физико-химических свойств. Способ определения комплекса физико-химических свойств н-алканов методом спектроскопии заключается в том, что проводят прямое измерение энергии ионизации (ПИ) методом фотоэлектронной спектроскопии, а затем рассчитывают значения соответствующих ФХС от энергии ионизации по эмпирическим зависимостям вида , где αi и βi - соответствующие эмпирические коэффициенты; Z - молекулярная масса, или температура кипения, или относительная плотность, или коэффициент преломления, или критическая температура, или теплота испарения; ПИ - значения энергии ионизации, определенные методом фотоэлектронной спектроскопии, эВ. Технический результат заключается в упрощении процедуры определения комплекса физико-химических свойств. 3 табл.
Способ определения комплекса физико-химических свойств н-алканов методом спектроскопии, отличающийся тем, что проводят прямое измерение энергии ионизации (ПИ) методом фотоэлектронной спектроскопии, а затем рассчитывают значения соответствующих ФХС от энергии ионизации по эмпирическим зависимостям вида где αi и βi - соответствующие эмпирические коэффициенты; Z - молекулярная масса, или температура кипения, или относительная плотность, или коэффициент преломления, или критическая температура, или теплота испарения; ПИ - значения энергии ионизации, определенные методом фотоэлектронной спектроскопии, эВ.
RU 95103839 A1, 27.12.1996 | |||
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕМЕНТАРНОГО СОСТАВА ТВЕРДОГО ТЕЛА | 1991 |
|
RU2017143C1 |
Способ спектрального анализа | 1984 |
|
SU1332203A1 |
Способ определения химического состава поликомпонентных минеральных веществ | 1977 |
|
SU763697A1 |
US 20090134326 A1, 28.05.2009 | |||
Способ определения потенциалов ионизации молекул органических соединений | 1986 |
|
SU1404936A1 |
Авторы
Даты
2013-03-20—Публикация
2011-07-06—Подача