Изобретение относится к неорганической химии, а именно к твердым электролитам с проводимостью по ионам кислорода, и может быть использовано в качестве элементов электрохимических приборов и устройств, например, в твердооксидных топливных элементах, электролизерах для получения особо чистых газов (кислород, водород), электрохимических сенсорах на кислород и т.д.
Наиболее широко в мире для этих целей используются твердые электролиты на основе ZrO2. Оксид гафния HfO2, будучи химическим и структурным аналогом оксида циркония ZrO2, является химически существенно более прочным соединением, поэтому твердые электролиты на основе HfO2 демонстрируют более высокую химическую стойкость к действию агрессивных сред, чем электролиты на основе ZrO2.
Известны двухкомпонентные твердые электролиты на основе HfO2, стабилизированные оксидами скандия, иттрия и др. редкоземельных элементов [1-3] (Kharton V.V., Yaremchenko A.A., Naumovich E.N., Marques F. Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. P.III. HfO2-, СеО2- and ThO2- based oxides. // J. Solid State Electrochemistry. (2000) 4. P. 243-266 [1]; Зубанкова Д. С., Волченкова 3. С. Природа проводимости системы HfO2-Y2O3. //Тр. ин-та электрохимии УНЦ АН СССР. 1976. Вып.23. С.89-94 [2]; Волченкова З.С., Зубанкова Д.С. Исследование характера электропроводности образцов системы HfO2-Sc2O3 /// Исследование солевых расплавов и окисных систем. - Свердловск: АН СССР УНЦ. 1975. С. - 107-111) [3].
Наибольшую проводимость среди твердых электролитов на основе HfO2 при высоких температурах имеют электролиты системы HfO2-Sc2O3 в области содержаний оксида скандия 8-12.5 мол.% Sc2O3 [1-3]. Однако твердые электролиты с максимальной проводимостью системы HfO2-Sc2O3 имеют ромбоэдрически искаженную структуру типа флюорита и вследствие этого при нагреве/охлаждении испытывают структурные превращения (фазовые переходы) «ромбоэдрическая структура ↔ кубическая структура» в области рабочих температур 630-760°С [3]. Эти структурные превращения сопровождаются резкими изменениями проводимости и объема, что создает проблемы для применения электролитов в электрохимических устройствах. В частности, изменение объема электролита при структурном превращении создает механические напряжения, которые могут приводить как к растрескиванию керамики, так и к отслаиванию электродов.
Задача настоящего изобретения заключается в создании твердого электролита на основе HfO2, обладающего стабильной структурой, применение которого, без снижения проводимости по сравнению с лучшим аналогом, не сопровождается растрескиванием керамики и отслаиванием электродов.
Для решения поставленной задачи заявлен твердый электролит на основе оксида гафния, содержащий оксид гафния с добавками оксидов. Твердый электролит отличается тем, что содержит оксид гафния с добавками оксидов скандия и иттрия, при этом отвечает формуле (1-х-y) HfO2+xSc2O3+yY2O3, где 0,07≤x≤0,1 и 0,01≤y≤0,04.
В отличие от наиболее близких аналогов, отвечающих формуле (1-х) HfO2+xSc2O3, где х=0.08; 0.10; 0.125; 0.15, имеющих ромбоэдрически искаженную структуру типа флюорита и испытывающих структурные превращения, заявляемый электролит имеет стабильную кубическую структуру типа флюорита и не испытывает структурных превращений, имея при этом проводимость, не уступающую аналогу или превосходящую ее.
Новый технический результат, достигаемый заявленным изобретением, заключается в получении твердых электролитов на основе HfO2, обладающих стабильной структурой и электропроводностью, не уступающей электропроводности лучшего аналога или превосходящей его.
Заявляемое изобретение иллюстрируется следующим. На фиг.1 представлены рентгенограммы образцов заявляемого электролита 0.9HfO2+0.08Sc2O3+0.02Y2O3 - (А) и образца по прототипу 0.90HfO2+0.10Sc2O3 - (Б), на фиг.2 - дилатометрия образца заявляемого электролита 0.9HfO2+0.08Sc2O3+0.02Y2O3 (А) и образца прототипа 0.90HfO2+0.10Sc2O3 (Б). В таблице приведены результаты измерений электропроводности материалов.
Чтобы исключить влияние методик синтеза и измерения на значения сравниваемых характеристик электролитов в рамках единых методик были изготовлены и измерены электропроводность, термическое расширение и фазовый состав образцов как заявленного электролита, содержащих оксид гафния с добавками оксидов скандия и иттрия, отвечающие формуле (1-х-y) HfO2+xSc2O3+yY2O3, где 0,07≤x≤0,1 и 0,01≤y≤0,04, так и образцов прототипа, отвечающих формуле (1-х)HfO2+xSc2O3, где х=0.08; 0.10; 0.125; 0.15, находящихся по составу в области максимальной проводимости.
Образцы спекали в вакуумной печи при температуре 1900°С в течение 1 ч с последующим отжигом на воздухе при 1000°С в течение 24 ч. Полученные образцы имели плотность в пределах 8.05-8.38 г/см3, что составляет более 90% от теоретической плотности.
Рентгенофазовый анализ показал (фиг.1), что в отличие от образцов прототипа, образцы заявленного электролита являются однофазными твердыми растворами с кубической структурой типа флюорита. При этом, как видно из фиг.2, иллюстрирующей дилатометрические измерения, данные образцы не испытывают структурных превращений.
Электропроводность материалов измеряли методом импеданса и четырехзондовым методом на постоянном токе на воздухе в интервале температур 900-500°С. Результаты измерений при 800°С и 700°С приведены в таблице. Из полученных данных следует, что наиболее высокопроводящий из образцов заявленного электролита 0.92HfO2+0.08Sc2O3+0.02Y2O3 обладает электропроводностью при 800°С (выше структурных превращений для прототипов), не уступающей лучшему по проводимости образцу прототипа 0.875HfO2+0.125Sc2O3, а при 700°С (ниже структурных превращений для образцов прототипов) превосходит электропроводность образцов прототипа в 1.5-2.8 раз.
Применение заявленного твердого электролита со стабильной кубической структурой типа флюорита в электрохимических устройствах не будет приводить к растрескиванию керамики и отслаиванию электродов.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИТНЫЙ ТВЕРДЫЙ ЭЛЕКТРОЛИТ НА ОСНОВЕ ФАЗ, КРИСТАЛЛИЗУЮЩИХСЯ В СИСТЕМЕ BiO-BaO-FeО, И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) | 2013 |
|
RU2554952C2 |
СПОСОБ КОНТРОЛЯ МНОГОКОМПОНЕНТНЫХ ОКСИДОВ НА ОБРАЗОВАНИЕ И СТАБИЛЬНОСТЬ ТВЕРДЫХ РАСТВОРОВ СО СТРУКТУРНЫМ ТИПОМ ФЛЮОРИТА | 2010 |
|
RU2445607C1 |
ЭЛЕКТРОХИМИЧЕСКИЙ ЭЛЕМЕНТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2008 |
|
RU2379670C1 |
СПОСОБ ПОЛУЧЕНИЯ ЭРОЗИОННОСТОЙКИХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ | 2012 |
|
RU2499078C1 |
ЭЛЕКТРОД-ЭЛЕКТРОЛИТНАЯ ПАРА НА ОСНОВЕ ДВУОКИСИ ЦИРКОНИЯ (ВАРИАНТЫ), СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ (ВАРИАНТЫ) И ОРГАНОГЕЛЬ | 2003 |
|
RU2236068C1 |
КЕРАМИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ИНТЕРКОННЕКТОРОВ ТОПЛИВНЫХ ЭЛЕМЕНТОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2015 |
|
RU2601436C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛОТНОЙ КЕРАМИКИ ДЛЯ ТВЕРДОГО ЭЛЕКТРОЛИТА | 2008 |
|
RU2382750C1 |
ОБЪЕМНЫЙ ТВЕРДЫЙ ЭЛЕКТРОЛИТ ДЛЯ ВЫСОКОТЕМПЕРАТУРНЫХ ЭЛЕКТРОТЕХНИЧЕСКИХ УСТРОЙСТВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2010 |
|
RU2422952C1 |
ОГНЕУПОРНЫЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ЭЛЕМЕНТ КОНСТРУКЦИИ, ВКЛЮЧАЮЩИЙ УКАЗАННЫЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2007 |
|
RU2489403C2 |
КАТОДНЫЙ МАТЕРИАЛ ДЛЯ ТОТЭ НА ОСНОВЕ МЕДЬ-СОДЕРЖАЩИХ СЛОИСТЫХ ПЕРОВСКИТОПОДОБНЫХ ОКСИДОВ | 2014 |
|
RU2550816C1 |
Изобретение относится к неорганической химии, а именно к твердым электролитам с проводимостью по ионам кислорода. Твердый электролит на основе оксида гафния содержит оксид гафния с добавками оксидов и отличается тем, что электролит содержит оксид гафния с добавками оксидов скандия и иттрия, при этом отвечает формуле (1-х-у) НfO2+xSc2O3+уY2О3, где 0,07≤x≤0,1 и 0,01≤у≤0,04. Технический результат заключается в получении твердого электролита на основе HfO2, обладающего стабильной структурой и электропроводностью, не уступающей электропроводности лучшего аналога или превосходящей его. 1 табл., 2 ил.
Твердый электролит на основе оксида гафния, содержащий оксид гафния с добавками оксидов, отличающийся тем, что электролит содержит оксид гафния с добавками оксидов скандия и иттрия, отвечающий формуле (1-х-у)HfO2+хSс2O3+уY2O3, где 0,07≤x≤0,1 и 0,01≤у≤0,04.
ТОПЛИВНЫЙ ЭЛЕМЕНТ И ЕГО ПРИМЕНЕНИЕ | 2006 |
|
RU2394311C2 |
ТОПЛИВНЫЙ ЭЛЕМЕНТ С ТВЕРДЫМ ЭЛЕКТРОЛИТОМ | 1994 |
|
RU2068603C1 |
ЭЛЕКТРОКАТАЛИЗАТОР ВОССТАНОВЛЕНИЯ КИСЛОРОДА, СОДЕРЖАЩИЙ ЕГО ТОПЛИВНЫЙ ЭЛЕМЕНТ И СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОЭНЕРГИИ | 2006 |
|
RU2422947C2 |
JP 2008243577 A, 10.09.2008 | |||
DE 3316909 A1, 24.01.1985. |
Авторы
Даты
2013-04-10—Публикация
2012-03-05—Подача