Изобретение относится к технологии получения основ синтетических базовых масел и может быть использовано в нефтехимической промышленности.
Важнейшей проблемой в разработке процесса соолигомеризации этилена с α-олефинами является выбор эффективной каталитической системы. Основная задача катализаторов - обеспечить синтез соолигомеров α-олефинов с высшими α-олефинами с высоким выходом и определенным уровнем физико-химических свойств, технологичность самого процесса в целом и последующих стадий по удалению остатков катализаторов из олигомеризата.
Известные способы получения полиолефиновых основ синтетических масел различаются между собой составами применяемых в них катионных катализаторов.
Известен способ катионной олигомеризации олефинов под действием каталитической системы, включающей металлический алюминий и четыреххлористый углерод. Катализатор для олигомеризации олефинов по этому способу получают путем взаимодействия металлического алюминия с четыреххлористым углеродом при температурах 40-80°С и массовом соотношении алюминия к четыреххлористому углероду, равном 1:(20-80), в среде четыреххлористого углерода в отсутствие олефинов в инертной атмосфере (Патент РФ №2212935).
Недостатком данного способа является использование четыреххлористого углерода в составе применяемой каталитической системы при высоком соотношении CCl4/Al(0). Это приводит к вхождению в состав продуктов большого количества (до 3,0% масс.) трудноудаляемого из них хлора. Другим недостатком является низкая активность и селективность по целевому продукту применяемой по этому способу каталитической системы Al(0)/CCl4.
Известен способ получения основ синтетических масел, в котором применена каталитическая система Al(0)-HCl-(СН3)3CCl, в присутствии которой проводят олигомеризацию высших α-олефинов С4-С14, преимущественно - С10, при температурах от 110 до 180°С, мольных соотношениях HCl/Al(0) в пределах от 0,002 до 0,06 и мольных соотношениях RCl/Al(0) в пределах от 1,0 до 5,0. При использовании децена-1 получают следующие характеристики олигомеризата после гидрирования: кинематическая вязкость при 100°С равна 3,9 сСт, индекс вязкости 130, температура застывания минус 60°С, температура вспышки 215-220°С (Патент РФ №2287552).
Недостатком указанного способа является дополнительное введение в процессе олигомеризации ароматических углеводородов (бензола, толуола, нафталина) и, как следствие, их присутствие в готовом продукте, что ограничивает сферу использования последнего.
Указанные известные способы получения основ синтетических масел относятся к процессу олигомеризации олефинов C8-C10 в присутствии алюминийсодержащих каталитических систем.
Все способы такого типа имеют два общих существенных недостатка. Главным общим недостатком известных способов получения деценовых олигомеров является относительно низкая конверсия мономера и селективность процесса. Другим общим недостатком является высокая себестоимость продукта ввиду использования в качестве мономера дорогостоящего децена-1.
Децен-1 относится к категории дефицитного и дорогостоящего химического сырья. Его получают только в процессах олигомеризации этилена под действием триэтилалюминия или комплексных катализаторов на основе металлов (Ti, Zr, Ni, Fe, Pd), что определяет высокую себестоимость синтезируемых масел.
Наиболее близким техническим решением к предлагаемому является способ получения синтетических базовых масел на основе С20-С60 олигомеров α-олефинов, в качестве которых преимущественно используется октен-1 и децен-1, в присутствии двухкомпонентной каталитической системы, содержащей алюминийалкилгалогенид и галоидорганическое соединение. В качестве алюминийалкилгалогенида используют этилалюминийсесквихлорид или диэтилалюминийхлорид. Галоидорганическим соединением является третбутилхлорид, аллилхлорид или бензилхлорид. Олигомеризацию проводят при температурах 100-150°С. Выход олигомерного продукта составляет не менее 56% об. (Патент США №4041098).
Недостатком способа и каталитических систем является низкий выход целевой фракции и недостаточно высокие индексы вязкости получаемого продукта. К недостаткам данного способа также относится неустойчивость процесса вследствие неизотермического протекания реакции в присутствии данной каталитической системы, что приводит к низкой конверсии мономера и селективности процесса. В результате получают низкий выход целевого продукта с недостаточно высоким индексом вязкости.
Технической задачей, решаемой данным изобретением, служит повышение селективности процесса и обеспечение синтеза соолигомеров α-олефинов с высшими α-олефинами с высоким выходом целевого продукта, повышение индекса вязкости химической чистоты и термоокислительной стабильности, уменьшение температуры застывания и испаряемости получаемого продукта.
Указанная техническая задача решается тем, что процесс соолигомеризации этилена с α-олефинами ведут при температуре 90-110°С и давлении этилена 30-50 бар, при этом катионная каталитическая система содержит алюминий, сокатализатор и активатор в виде сесквиэтилалюминийхлорида (СЭАХ) или диэтилалюминийхлорида (ДЭАХ), а в качестве сокатализатора используют изопропилхлорид (ИПХ) при мольном соотношении ИПХ:Al, равном 0,3-3,0, и мольном соотношении СЭАХ (ДЭАХ):Al, находящимся в пределах от 0,02 до 0,07. Алюминий каталитической системы имеет вид высокодисперсного порошка с размерами частиц в пределах от 1 до 100 мкм, а в качестве соолигомеров этилена используют октен-1 или децен-1.
Указанные признаки существенны. В соответствии с данным способом для повышения селективности и улучшения технико-экономических показателей вместо дорогостоящих октена-1 и децена-1 частично используется более дешевый и доступный мономер - этилен, содержание которого в полимерной цепи может достигать 50% масс. Коренным отличием этилен-α-олефиновых масел от поли-α-олефиновых масел является замена в макромолекулярной цепи части альфа-олефинов на этилен, что при прочих преимуществах обеспечивает снижение себестоимости продукции. Соолигомеризацию этилена с α-олефинами обеспечивает предложенная каталитическая система, осуществляющая данный процесс в присутствии активатора при заданных температуре и давлении этилена. То есть техническая задача решается заявленной совокупностью признаков в их сочетании. Каталитическая система характеризуется высокой эффективностью в синтезе высокоиндексных низкозастывающих синтетических этилен-α-олефиновых масел.
Преимущество процесса соолигомеризации этилена с α-олефинами по сравнению с существующей технологией получения поли-α-олефиновых масел заключается в меньших затратах на энергоресурсы и сырье. Экономия ресурсов достигается за счет использования более дешевого и доступного мономера - этилена, содержание которого в полимерной цепи может достигать 50% масс.
Эффективность способа оценивалась в процессе соолигомеризации этилена с октеном-1 и деценом-1 по остаточному содержанию α-олефина, взятого на соолигомеризацию, и по содержанию масляной фракции, выкипающей выше 300°С в реакционной массе, полученной после проведения процесса, отмывки от катализаторной массы, осушки и фракционирования.
Способ иллюстрируется следующими примерами.
Пример 1
Процесс соолигомеризации этилена с октеном-1 ведут при температуре 110°С и давлении этилена 50 бар. Катионная каталитическая система содержит алюминий в виде высокодисперсного порошка с размерами частиц 100 мкм, активатор в виде сесквиэтилалюминийхлорида (СЭАХ) и изопропилхлорид (ИПХ) при мольном соотношении ИПХ:Al, равном 0,3, и мольном соотношении СЭАХ:Al, равном 0,07.
Пример 2
Процесс соолигомеризации этилена с октеном-1 ведут при температуре 90°С и давлении этилена 30 бар. Катионная каталитическая система содержит алюминий в виде высокодисперсного порошка с размерами частиц 10 мкм, активатор в виде сесквиэтилалюминийхлорида (СЭАХ) и изопропилхлорид (ИПХ) при мольном соотношении ИПХ:Al, равном 3, и мольном соотношении СЭАХ:Al, равном 0,02.
Пример 3
Процесс соолигомеризации этилена с октеном-1 ведут при температуре 100°С и давлении этилена 40 бар. Катионная каталитическая система содержит алюминий в виде высокодисперсного порошка с размерами частиц 1 мкм, активатор в виде диэтилалюминийхлорида (ДЭАХ) и изопропилхлорид (ИПХ) при мольном соотношении ИПХ:Al, равном 1, и мольном соотношении ДЭАХ:Al, равном 0,05.
Пример 4
Процесс соолигомеризации этилена с октеном-1 ведут при температуре 95°С и давлении этилена 50 бар. Катионная каталитическая система содержит алюминий в виде высокодисперсного порошка с размерами частиц 50 мкм, сесквиэтилалюминийхлорид (СЭАХ) и изопропилхлорид (ИПХ) при мольном соотношении ИПХ:Al, равном 2, и мольном соотношении СЭАХ:Al, равном 0,04.
Пример 5
Процесс соолигомеризации этилена с деценом-1 ведут при температуре 110°С и давлении этилена 50 бар. Катионная каталитическая система содержит алюминий в виде высокодисперсного порошка с размерами частиц 80 мкм, сесквиэтилалюминийхлорид (СЭАХ) и изопропилхлорид (ИПХ) при мольном соотношении ИПХ:Al, равном 0,3, и мольном соотношении СЭАХ:Al, равном 0,02.
Пример 6
Соолигомеризацию этилена с деценом-1 ведут при температуре 90°С и давлении этилена 30 бар. Катионная каталитическая система содержит алюминий в виде высокодисперсного порошка с размерами частиц 10 мкм, диэтилалюминийхлорид (ДЭАХ) и изопропилхлорид (ИПХ) при мольном соотношении ИПХ:Al, равном 3, и мольном соотношении ДЭАХ:Al, равном 0,07.
Пример 7
Соолигомеризацию этилена с деценом-1 ведут при температуре 100°С и давлении
этилена 40 бар. Катионная каталитическая система содержит алюминий в виде высокодисперсного порошка с размерами частиц 1 мкм, сесквиэтилалюминийхлорид (СЭАХ) и изопропилхлорид (ИПХ) при мольном соотношении ИПХ:Al, равном 1,5, и мольном соотношении СЭАХ:Al, равном 0,04.
Пример 8
Соолигомеризацию этилена с деценом-1 ведут при температуре 105°С и давлении этилена 45 бар. Катионная каталитическая система содержит алюминий в виде высокодисперсного порошка с размерами частиц 60 мкм, диэтилалюминийхлорид (ДЭАХ) и изопропилхлорид (ИПХ) при мольном соотношении ИПХ:Al, равном 2, и мольном соотношении ДЭАХ:Al, равном 0,06.
Пример 9 (сравнение с прототипом)
Соолигомеризацию этилена с гексеном-1 ведут в присутствии каталитической системы, содержащей алюминий, хлористый алкил RCl, где R - изопропил, при молярном соотношении хлористого алкила, алюминия и этилена 1:(10):(1100) при температуре 200°С и давлении 100 бар.
Основные физико-химические свойства целевой фракции соолигомеров этилена с α-олефинами, полученной в процессе соолигомеризации этилена с октеном-1, деценом-1 и гексеном-1, по примерам 1-9 приведены в таблице.
Таблица
Как видно из таблицы, заявленный способ обеспечивает повышение основных физико-химических свойств получаемой основы базовых масел, существенно превышая таковые по прототипу.
Получаемые по данной технологии продукты характеризуются высоким индексом вязкости (120-150), высокой химической чистотой, низкой температурой застывания (минус 60°С и ниже), низкой испаряемостью, высокой термоокислительной стабильностью и являются базой для получения гидравлических, авиационных масел, моторных и трансмиссионных масел северных и арктических марок. Благодаря отсутствию ароматических углеводородов они могут использоваться как медицинские, парфюмерные и вакцинные масла.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения маловязких, низкозастывающих синтетических полиальфаолефиновых базовых масел | 2016 |
|
RU2615776C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПОЛУЧЕНИЯ КОМПОНЕНТА БУРОВЫХ РАСТВОРОВ, КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ КОМПОНЕНТА БУРОВЫХ РАСТВОРОВ | 2014 |
|
RU2547653C1 |
КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ БАЗОВЫХ МАСЕЛ В ПРОЦЕССЕ СООЛИГОМЕРИЗАЦИИ ЭТИЛЕНА С АЛЬФА-ОЛЕФИНАМИ С6-С10 И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 2013 |
|
RU2523015C1 |
Способ получения синтетических высоковязких полиальфаолефиновых базовых масел | 2018 |
|
RU2666736C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИОЛЕФИНОВЫХ ОСНОВ СИНТЕТИЧЕСКИХ МАСЕЛ | 2004 |
|
RU2287552C2 |
СПОСОБ ПОЛУЧЕНИЯ ОЛЕФИНОВЫХ ОЛИГОМЕРОВ | 2001 |
|
RU2199516C2 |
СПОСОБ ПОЛУЧЕНИЯ ОЛИГОМЕРОВ АЛЬФА-ОЛЕФИНА C, C ИЛИ C | 2015 |
|
RU2570650C1 |
Способ получения полиальфаолефинов с кинематической вязкостью 10-25 сСт | 2018 |
|
RU2666725C1 |
КАТАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И СПОСОБ ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА | 1995 |
|
RU2142472C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПОЛИМЕРИЗАЦИИ ПРОПИЛЕНА | 1993 |
|
RU2064839C1 |
Изобретение относится к технологии получения основ синтетических базовых масел и может быть использовано в нефтехимической промышленности. Изобретение касается способа получения основы синтетических базовых масел, включающего соолигомеризацию углеводорода с α-олефинами в присутствии катионной каталитической системы, содержащей алюминий и сокатализатор, в котором в качестве углеводорода используют этилен, а алюминий имеет вид высокодисперсного порошка с размерами частиц в пределах от 1 до 100 мкм, в качестве α-олефинов используют октен-1 и/или децен-1, процесс соолигомеризации ведут при температуре 90-110°С и давлении этилена 30-50 бар, при этом каталитическая система дополнительно содержит активатор в виде сесквиэтилалюминийхлорида (СЭАХ) или диэтилалюминийхлорида (ДЭАХ), а в качестве сокатализатора используют изопропилхлорид (ИПХ) при мольном соотношении ИПХ:Al, равном 0,3-3,0, и мольном соотношении СЭАХ (ДЭАХ):Al, находящимся в пределах от 0,02 до 0,07. Технический результат - высокий выход целевого продукта, повышение основных свойств получаемой основы базовых масел. 1 табл., 9 пр.
Способ получения основы синтетических базовых масел, включающий соолигомеризацию углеводорода с α-олефинами в присутствии катионной каталитической системы, содержащей алюминий и сокатализатор, отличающийся тем, что в качестве углеводорода используют этилен, а алюминий имеет вид высокодисперсного порошка с размерами частиц в пределах от 1 до 100 мкм, в качестве α-олефинов используют октен-1 и/или децен-1, процесс соолигомеризации ведут при температуре 90-110°С и давлении этилена 30-50 бар, при этом каталитическая система дополнительно содержит активатор в виде сесквиэтилалюминийхлорида (СЭАХ) или диэтилалюминийхлорида (ДЭАХ), а в качестве сокатализатора используют изопропилхлорид (ИПХ) при мольном соотношении ИПХ:Al, равном 0,3-3,0, и мольном соотношении СЭАХ (ДЭАХ):Al, находящимся в пределах от 0,02 до 0,07.
Мамедалиев Г.А., Сеидов Н.М., Сафаралиева Ф.Д., Полчаев Р.А | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
- Вопросы химии и химической технологии, 2009, №4, с.38-41 | |||
Способ получения синтетических масел | 1982 |
|
SU1068467A1 |
Катализатор для олигомерации соолигомеризации олефинов | 1972 |
|
SU430581A1 |
US 4182922 А, 08.01.1980 | |||
US 6646174 В2, 11.11.2003. |
Авторы
Даты
2013-04-27—Публикация
2011-12-26—Подача