Область техники
Настоящее изобретение относится к установке боковых и донных электродов для электроплавильного реактора и к способу подачи таких электродов.
Уровень техники
Металлический алюминий обычно производят двумя методами: традиционным - способом Холла, при котором между двумя электродами пропускают электрический ток для восстановления глинозема до металлического алюминия; и углетермическим способом, при котором оксид алюминия химически восстанавливают до алюминия за счет химической реакции с углем. Итоговая реакция углетермического восстановления алюминия:
Al2O3+3C→2Al+3CO(1)
протекает или может быть сделана протекающей через ряд химических реакций, таких как:
Реакция (2), общеизвестная как этап получения шлака, часто протекает при температурах между 1875°C и 2000°C. Реакция (3), общеизвестная как этап получения алюминия, часто протекает при температурах выше примерно 2050°C. В ходе реакций (2) и (3) могут образовываться алюминийсодержащие парообразные вещества, хотя алюминийсодержащие парообразные вещества могут образовываться и при реакциях (4), (5) и (6).
Сущность изобретения
Настоящее изобретение относится к улучшенным углетермическим реакторам с улучшенными способами, системами и устройством для подачи электродов в реактор.
В некоторых процессах в электроплавильном реакторе иногда выгодно или даже необходимо использовать электроды, вставляемые через боковые стенки реактора или вставляемые через дно реактора в расплавленный материал, такой как жидкий шлак, металл, сплавы или расплавленные соли, содержащиеся в реакторе. Это имеет место, например, в способе производства алюминия углетермическим восстановлением глинозема, как описано в патенте США № 6440193. В способе, описанном в этом патенте, энергия подается в высокотемпературное отделение реактора через электроды, вводимые через боковые стенки реактора в слой шлака. В способе, описанном в патенте США № 6440193, высокотемпературное отделение имеет нижний слой расплавленного шлака и верхний слой расплавленного алюминия. В этом высокотемпературном отделении невозможно использовать вводимые сверху вертикальные электроды, так как верхний слой расплавленного алюминия будет закорачивать электроды. Следовательно, необходимо использовать боковые электроды или донные электроды, проникающие в слой шлака.
Обычно электроды для электроплавильных реакторов являются расходуемыми углеродными электродами, такими как графитовые или предварительно обожженные угольные электроды. Когда используются расходуемые электроды, эти электроды необходимо время от времени подавать внутрь реактора, чтобы компенсировать расход электродов. Электроды должны проникать сквозь боковую стенку или дно реактора герметично, чтобы предотвратить вытекание жидкого материала из реактора, и уплотнение электродов должно также позволять подачу электродов без проникновения жидкого материала через уплотнение электродов.
Некоторые жидкие материалы наподобие шлака являются очень агрессивными и будут разъедать известные огнеупорные футеровки. Поэтому реакторы, работающие при высоких температурах, часто имеют застывший слой гарнисажа из твердого шлака для защиты стенок и дна реактора. Поэтому реакторы для получения алюминия углетермическим восстановлением глинозема по меньшей мере в области, предназначенной для покрытия расплавленным шлаком, предпочтительно делают из охлаждаемых металлических панелей, в частности охлаждаемых медных панелей, причем охлаждение панелей регулируется или подстраивается так, чтобы обеспечить и поддерживать защитный слой застывшего шлака на внутренней поверхности охлаждаемых панелей.
Было обнаружено, что очень сложно вводить электроды через боковые стенки и дно реактора как в случае боковых стенок и дна, сделанных из охлаждаемых панелей, так и в случае обычных боковых стенок и дна, сделанных из огнеупорных материалов, создавая и поддерживая надежную герметичность между электродом и охлаждаемыми панелями и имея возможность подавать электроды без риска вытекания шлака через проем для электрода.
Согласно одному аспекту настоящее изобретение относится к электродной установке для боковой стенки и/или электродам для металлургического реактора, предназначенного содержать жидкий материал, причем по меньшей мере один расходуемый электрод вставляется через боковую стенку или дно реактора через проем в боковой стенке или дне реактора, причем электродная установка характеризуется тем, что она содержит контактный зажим для проведения рабочего тока к электроду, причем указанный контактный зажим расположен вокруг электрода, имеет внутренние каналы для циркуляции охлаждающей среды и имеет сужающуюся внутрь секцию; электроизоляционное кольцо, вставленное в проем в боковой стенке или дне реактора и поверхность электрода, чтобы создать уплотнение между поверхностью электрода и боковой стенкой или дном реактора; и средство для прижатия токопроводящего зажима к изоляционному кольцу.
Согласно одному варианту воплощения настоящего изобретения передняя часть токопроводящего зажима простирается в проем между поверхностью электрода и изоляционным кольцом.
Согласно другому предпочтительному варианту воплощения средство прижатия электропроводящего зажима к изоляционному кольцу содержит стальное кольцо, расположенное вокруг электрода и прикрепленное к внешней стороне боковой стенки или дна реактора, причем указанное стальное кольцо имеет сужающийся наружу проем и при этом токопроводящий зажим имеет соответственно сужающуюся внутрь наружную поверхность, которая вдавливается в проем в стальном кольце.
Согласно еще одному предпочтительному варианту воплощения боковая стенка и/или дно реактора состоят из охлаждаемых металлических панелей, причем стальное кольцо прикреплено к охлаждаемой металлической панели.
Электродная установка согласно настоящему изобретению может обеспечивать надежную герметизацию, предотвращающую проникновение находящегося в реакторе жидкого материала через уплотнение электрода.
Когда боковая стенка и/или дно реактора состоит из охлаждаемых металлических панелей, при работе реактора на охлаждаемых панелях будет образовываться застывший слой находящегося в реакторе материала, и этот застывший слой материала будет простираться на сторону изоляционного кольца, обращенную внутрь реактора, и на поверхность электрода, защищая таким образом уплотнение электрода.
Боковой электрод по настоящему изобретению может быть либо горизонтальным, либо расположенным под углом к горизонтали. Донный электрод по настоящему изобретению предпочтительно является вертикальным.
Кроме того, настоящее изобретение относится к способу подачи расходуемого электрода, расположенного в боковой стенке и/или дне металлургического реактора, содержащего жидкий материал, причем электрод подают подающими электрод цилиндрами, соединенными с электродом, причем способ характеризуется тем, что подачу электрода производят на основе повышения температуры в или вблизи боковой стенки или дна, где электрод вставлен в боковую стенку или дно реактора.
Согласно предпочтительному варианту воплощения способа по настоящему изобретению, где боковая стенка и/или дно реактора выполнена(о) из охлаждаемых металлических панелей и где на внутренней стороне охлаждаемых металлических панелей образуется застывший слой материала, подача электрода основана на оказании давления на подающие электрод цилиндры, чтобы разбить застывший слой шлака, когда рабочий конец электрода продвинулся к боковой стенке и/или дну в такой степени, что застывший слой материала частично расплавился.
В одном подходе изобретение можно охарактеризовать как металлургический реактор, содержащий:
(i) оболочку с боковой стенкой и дном, причем оболочка приспособлена содержать расплавленный материал,
(ii) по меньшей мере один расходуемый электрод, выступающий через проем оболочки в расплавленный материал, причем проем находится в боковой стенке или дне оболочки,
(iii) токопроводящий контактный зажим, выполненный с возможностью проводить рабочий ток к электроду, причем токопроводящий зажим находится в контакте с электродом, при этом токопроводящий зажим содержит по меньшей мере один внутренний канал, причем этот внутренний канал выполнен с возможностью циркуляции охлаждающей среды; и
(iv) электроизоляционное кольцо, расположенное между электродом и проемом оболочки, причем электроизоляционное кольцо выполнено с возможностью герметично охватывать электрод и проем так, чтобы ограничивать вытекание расплавленного материала из оболочки.
В одном варианте воплощения передняя часть токопроводящего зажима простирается в проем между поверхностью электрода и изоляционным кольцом. В одном варианте воплощения реактор включает в себя стальное кольцо, расположенное вокруг электрода и прикрепленное к наружной стороне боковой стенки или дна реактора, причем стальное кольцо имеет первую сопрягаемую поверхность, а токопроводящий зажим имеет соответствующую вторую сопрягаемую поверхность, при этом, когда вторая сопрягаемая поверхность токопроводящего зажима соприкасается с первой сопрягаемой поверхностью стального кольца, то на по меньшей мере передней части токопроводящего зажима создается сжимающая сила. В одном варианте воплощения по меньшей мере одно из боковой стенки и дна реактора содержит по меньшей мере одну охлаждаемую металлическую панель. В одном варианте воплощения стальное кольцо прикреплено к по меньшей мере одной охлаждаемой металлической панели.
Краткое описание чертежей
Фигура 1 является вертикальным разрезом первого варианта воплощения электродной установки согласно настоящему изобретению.
Фигура 2 показывает увеличенный вид зоны A с фигуры 1.
Фигура 3 является вертикальным разрезом второго варианта воплощения электродной установки согласно настоящему изобретению.
Подробное описание
На фигуре 1 показана часть боковой стенки металлургического реактора, предназначенного содержать жидкий шлак и имеющего боковую стенку, состоящую из охлаждаемых медных панелей 1. Горизонтальный расходуемый электрод 2 вставлен через проем 3 в охлаждаемой панели 1 внутрь реактора. Реактор предназначен содержать жидкий шлак (например, Al3C4-Al2O3) и расплавленный металл (например, металлический алюминий). Электрод 2 является расходуемым электродом, сделанным из графита или предварительно обожженного углерода. В проем 3 вставлено уплотняющее и электроизоляционное кольцо 4, оставляющее кольцевой проем между электродом 2 и изоляционным кольцом 4. Изоляционное кольцо 4 сделано из огнеупорного материала, который может выдерживать температуру, как, например, глиноземный огнеупор или любые другие подходящие огнеупорные материалы, имеющие электроизоляционные свойства.
Вокруг электрода 2 расположен токопроводящий зажим 5, сделанный из меди или медного сплава и имеющий внутренние каналы для циркуляции охлаждающей среды. Токопроводящий зажим 5 имеет сужающуюся внутрь часть и вдавлен в проем 3 между электродом 2 и изоляционным кольцом 4, чтобы уплотнить боковую стенку и предотвратить вытекание расплавленного материала, предназначенного содержаться в реакторе.
С токопроводящим зажимом 5 соединены проводники 6 тока для проведения рабочего тока к электроду 2 от источника тока (не показан). Проводники 6 тока выполнены в виде трубок для подачи охлаждающей среды к токопроводящему зажиму 5.
Токопроводящий зажим 5 вдавливают в проем 3 между изоляционным кольцом 4 и электродом 2 следующим образом: стальное кольцо 7, имеющее сужающуюся наружу внутреннюю поверхность, крепят к панели 1 посредством болтов 8. Болты изолированы от панели 1. Токопроводящий зажим 5 заставляют прижиматься к электроду 2 и стальному кольцу 7 посредством второго стального кольца 9, прикрепленного к панели 1 посредством болтов 10. Вставляют электроизоляционное кольцо 11 между токопроводящим зажимом 5 и вторым стальным кольцом 9. При затягивании болтов 10 токопроводящий зажим 5 прижимают к электроду 2 и стальному кольцу 7 с достаточной величиной заранее заданной уплотняющей силой, чтобы герметизировать боковую стенку и обеспечить достаточное давление электрического контакта между электродом 2 и токопроводящим зажимом 5.
Чтобы подать расходуемый электрод 2, подающие электрод цилиндры 13, 14 крепятся к панели 1 посредством болтов 15 или тому подобного. Подающие электрод цилиндры 13, 14 соединены с электродом 2 посредством зажимающего электрод кольца 16, которое может прижиматься к наружной поверхности электрода 2. Зажимающее электрод кольцо 16 может быть обычным гидравлическим цилиндром или группой пружин. Зажимающее электрод кольцо 16 прикреплено к подающим электрод цилиндрам 13, 14 посредством соединений болтами и гайками.
Более конкретно и со ссылкой уже на фигуру 2 наружный фланец 20 на подающем электрод цилиндре 14 прикреплен к наружной части зажимающего электрод кольца 16 посредством соединения болтом 21 и гайкой 22. Чтобы изолировать зажимающее электрод кольцо 16 от подающего электрод цилиндра 14, в отверстие для болта 21 вставлена изоляционная втулка 23 вместе с изоляционными элементами 24 и 25. Наконец, между подающим электрод цилиндром 14 и зажимающим электрод кольцом 16 расположено изоляционное кольцо 26. Сходные конструкции могут применяться для других соединительных болтов (например, любых из болтов 8, 10 или 15). Могут применяться другие конструкции болтовых соединений.
На фигуре 3 показан второй вариант воплощения электрода по настоящему изобретению. Детали на фигуре 3, соответствующие деталям на фигуре 1, имеют одинаковые ссылочные позиции. Вариант воплощения, показанный на фигуре 3, отличается от варианта воплощения, показанного на фигуре 1, в двух отношениях.
Во-первых, токопроводящий зажим 5 не простирается в проем 3 в медной панели 1. В варианте воплощения, показанном на фигуре 3, уплотнение между электродом и панелью 1 состоит из изоляционного кольца 4 с токопроводящим зажимом 5, прижимающимся к стальному кольцу 7 и изоляционному кольцу 4. Этот вариант уплотнения электрода может быть проще в реализации, чем вариант, показанный на фигуре 1.
Во-вторых, подающие электрод цилиндры 13, 14 соединены с устройством 30, которое способно толкать зад электрода в реактор. Устройство 30 включает в себя ниппель 31 с резьбой 32, ввинченный в резьбовое углубление в заднем конце электрода 2. Ниппель 31, показанный на фигуре 3, является коническим, но он может также иметь цилиндрическую форму. Когда подающие электрод цилиндры 13, 14 приведены в действие, устройство 30 включено и давит на зад электрода, тем самым продвигая часть рабочего конца электрода дальше в реактор.
Хотя настоящее изобретение было описано в связи с боковой стенкой реактора, состоящей из охлаждаемых металлических панелей, это же применимо к боковым стенкам и дну реактора с обычными огнеупорными футеровками.
При работе описанного реактора из-за охлаждения панелей 1 на внутренней стороне охлаждаемых панелей 1 (т.е. стороне панелей, обращенных внутрь реактора) будет образовываться застывший слой шлака. Этот застывший слой шлака будет, для варианта воплощения, показанного на фигуре 1, простираться по изоляционному кольцу 4, внутреннему концу токопроводящего зажима 5 к электроду 2 и по меньшей мере частично способствовать уплотнению между электродом 2 и медными охлаждаемыми панелями 1. Для варианта воплощения, показанного на фигуре 3, застывший слой шлака будет простираться по изоляционному кольцу к электроду 2 и аналогичным образом по меньшей мере частично способствовать уплотнению между электродом 2 и охлаждаемыми панелями 1.
Электрод 2 расходуется при работе реактора, и рабочий конец 12 электрода будет медленно двигаться к боковой стенке реактора. Таким образом, электрод 2 время от времени подают в реактор по мере того, как рабочий конец 12 электрода придвигается ближе к охлаждаемой панели 1. Так как температура у рабочего конца 12 электрода является высокой, температура вблизи уплотнения электрода будет повышаться. В некоторых вариантах воплощения тепло на рабочем конце 12 электрода может частично расплавить застывший слой шлака вблизи электрода 2. В одном варианте воплощения подача электрода 2 основана на этом повышении температуры. В соответствующем варианте воплощения подачу электрода 2 совершают путем оказания давления на подающие электрод цилиндры 13, 14, которое будет достаточным, чтобы разбить оставшийся застывший слой шлака, в результате чего электрод 2 подается в реактор (например, на заданную длину). После подачи электрода давление на зажимающем электрод кольце 16 снимают, а подающие электрод цилиндры 13, 14 и зажимающее электрод кольцо 16 отводят и оставляют под давлением готовыми для следующего цикла подачи электрода 2. Так как рабочий конец 12 электрода в результате подачи электрода продвинулся дальше от стенки реактора, новый слой застывшего шлака будет снова устанавливаться между поверхностью электрода 2 и охлаждаемыми панелями 1. Таким образом можно осуществлять надежную подачу электрода 2 без утечки расплавленного шлака.
название | год | авторы | номер документа |
---|---|---|---|
РАСХОДУЕМЫЙ ЭЛЕКТРОД ДЛЯ ПОЛУЧЕНИЯ ВЫСОКОТИТАНОВОГО ФЕРРОСПЛАВА ЭЛЕКТРОШЛАКОВЫМ ПЛАВЛЕНИЕМ | 2005 |
|
RU2335553C2 |
МЕТАЛЛУРГИЧЕСКАЯ ПЕЧЬ | 2013 |
|
RU2647044C2 |
ВАННА-КРИСТАЛЛИЗАТОР УСТАНОВКИ ДЛЯ ПОЛУЧЕНИЯ ФЕРРОТИТАНА ПУТЕМ ЭЛЕКТРОДУГОВОГО ПЛАВЛЕНИЯ РУТИЛА ПОД СЛОЕМ ЗАЩИТНОГО ФЛЮСА | 2007 |
|
RU2377325C2 |
УСТРОЙСТВО С ТВЕРДОТЕЛЬНОЙ НАСАДКОЙ ДЛЯ ПРОВЕДЕНИЯ ЭНДОТЕРМИЧЕСКИХ РЕАКЦИЙ С ПРЯМЫМ ЭЛЕКТРИЧЕСКИМ НАГРЕВОМ | 2019 |
|
RU2778871C2 |
ЭЛЕКТРОД И ОХЛАЖДАЮЩИЙ ЭЛЕМЕНТ ДЛЯ МЕТАЛЛУРГИЧЕСКОГО СОСУДА | 1997 |
|
RU2159993C2 |
ЭЛЕКТРОД И СПОСОБ УСТАНОВКИ ЭЛЕКТРОДА В ДУГОВОЙ ЭЛЕКТРОПЕЧИ | 2003 |
|
RU2330391C2 |
УСТРОЙСТВО И СПОСОБ УГЛЕТЕРМИЧЕСКОГО ПОЛУЧЕНИЯ АЛЮМИНИЯ | 2008 |
|
RU2614223C2 |
УСТРОЙСТВО И СПОСОБ УГЛЕТЕРМИЧЕСКОГО ПОЛУЧЕНИЯ АЛЮМИНИЯ | 2008 |
|
RU2486268C2 |
ПОДОВЫЙ ЭЛЕКТРОД ДЛЯ ПОДВОДА ПОСТОЯННОГО ТОКА К ЖИДКОМУ МЕТАЛЛУ | 2011 |
|
RU2467521C1 |
ПЛАВИЛЬНАЯ ПЕЧЬ С ОДНОВРЕМЕННО ВРАЩАЮЩЕЙСЯ И ПЕРЕМЕЩАЕМОЙ ШТАНГОЙ ЭЛЕКТРОДА | 2018 |
|
RU2748757C1 |
Изобретение относится к металлургическому реактору, выполненному с возможностью подачи и охлаждения электродов. Реактор содержит оболочку с боковой стенкой и дном, приспособленную содержать расплавленный материал. Реактор содержит по меньшей мере один расходуемый электрод, проходящий через проем оболочки в расплавленный материал, токопроводящий контактный зажим, выполненный с возможностью проводить рабочий ток к электроду и находящийся в контакте с электродом. Токопроводящий зажим имеет по меньшей мере один внутренний канал, выполненный с возможностью циркуляции охлаждающей среды. Реактор имеет электроизоляционное кольцо, расположенное между электродом и проемом оболочки, причем электроизоляционное кольцо выполнено с возможностью герметичного схватывания электрода и проема для ограничения вытекания расплавленного материала из оболочки. Способ включает подачу электрода в реактор в зависимости от повышения температуры в боковой стенке или дне или вблизи них, где электрод вставлен в боковую стенку или дно реактора, и подачу охлаждающей воды через токопроводящий контактный зажим. Обеспечивается снижение расхода электродов и предотвращение вытекания расплава из реактора. 2 н. и 6 з.п. ф-лы, 3 ил.
1. Металлургический реактор, содержащий оболочку с боковой стенкой и дном, причем оболочка приспособлена содержать расплавленный материал, по меньшей мере один расходуемый электрод (2), выступающий через проем (3) оболочки в расплавленный материал, причем проем (3) находится в боковой стенке или дне оболочки, токопроводящий контактный зажим (5), выполненный с возможностью проводить рабочий ток к электроду (2), при этом токопроводящий зажим (5) находится в контакте с электродом (2), и при этом токопроводящий зажим (5) содержит по меньшей мере один внутренний канал, причем этот внутренний канал выполнен с возможностью циркуляции охлаждающей среды, электроизоляционное кольцо (4), расположенное между электродом (2) и проемом (3) оболочки, причем электроизоляционное кольцо (4) выполнено с возможностью герметичного схватывания электрода (2) и проема (3) так, чтобы ограничивать вытекание расплавленного материала из оболочки.
2. Реактор по п.1, отличающийся тем, что передняя часть токопроводящего зажима (5) простирается в проем между поверхностью электрода (2) и изоляционным кольцом (4).
3. Реактор по п.2, отличающийся тем, что он содержит стальное кольцо (7), расположенное вокруг электрода (2) и прикрепленное к наружной стороне боковой стенки или дна реактора, причем стальное кольцо (7) имеет первую сопрягаемую поверхность, и при этом токопроводящий зажим (5) имеет соответствующую вторую сопрягаемую поверхность, причем вторая сопрягаемая поверхность приспособлена соприкасаться с первой сопрягаемой поверхностью стального кольца (7) таким образом, что по меньшей мере на передней части токопроводящего зажима (5) создается сжимающая сила.
4. Реактор по любому из пп.1-3, отличающийся тем, что по меньшей мере одно из боковой стенки и дна реактора содержит по меньшей мере одну охлаждаемую металлическую панель (1).
5. Реактор по п.4, отличающийся тем, что стальное кольцо (7) прикреплено по меньшей мере к одной охлаждаемой металлической панели (1).
6. Реактор по любому из пп.1-3, отличающийся тем, что оболочка приспособлена содержать расплавленный материал, содержащий по меньшей мере одно из шлака и металлического алюминия.
7. Способ подачи расходуемого электрода (2), расположенного в боковой стенке и/или дне металлургического реактора, содержащего жидкий материал, включающий подачу электрода (2) подающими электрод цилиндрами (14, 15), соединенными с электродом (2), при этом подачу электрода (2) производят в зависимости от повышения температуры в боковой стенке, или дне, или вблизи места расположения вставленного в боковую стенку или дно электрода (2), при этом через токопроводящий контактный зажим (5) к электроду (2) подают охлаждающую среду.
8. Способ по п.7, отличающийся тем, что боковая стенка и/или дно металлургического реактора выполнены из охлаждаемых металлических панелей (1), а подачу электрода (2) осуществляют путем оказания на подающие электрод цилиндры (14, 15) давления, достаточного, чтобы разбить застывший на внутренней стороне охлаждаемых металлических панелей (1) слой материала, когда рабочий конец (12) электрода (2) продвинулся к боковой стенке и/или дну в такой степени, что застывший слой материала по меньшей мере частично расплавился.
US 20050041719 A1, 24.02.2005 | |||
WO 2005074324 A1, 11.08.2005 | |||
МНОГОФУНКЦИОНАЛЬНОЕ УСТРОЙСТВО ДЛЯ ЛЮДЕЙ С ДЕФЕКТАМИ СЛУХА | 1996 |
|
RU2125773C1 |
US 6440193 B1, 27.08.2002 | |||
ЭЛЕКТРОПЕЧЬ ДЛЯ ПЕРЕРАБОТКИ ТЕХНОГЕННОГО СЫРЬЯ | 2003 |
|
RU2235258C1 |
АГРЕГАТ ДЛЯ ПЕРЕРАБОТКИ МЕДНО-ЦИНКОВЫХ И СВИНЦОВО-ЦИНКОВЫХ МАТЕРИАЛОВ | 2003 |
|
RU2236659C1 |
Авторы
Даты
2013-05-20—Публикация
2008-09-16—Подача