Изобретение относится к способам защиты стальных металлоизделий от атмосферной коррозии при хранении их на открытых площадках, в неотапливаемом помещении, а также в штабелях в процессе длительного хранения в условиях создания запаса госрезерва в жестких и особо жестких условиях, в том числе тропического, субтропического и морского климата, связанных с повышенными температурами, высокой относительной влажностью и возможным подкислением поверхностной пленки влаги за счет выпадения кислотных дождей. Оно может быть использовано в машиностроении, металлургии, в сельскохозяйственном производстве и на предприятиях госрезерва.
Известны многочисленные способы защиты металлоизделий от атмосферной коррозии посредством нанесения на поверхность металлоизделий консервационных материалов на масляной основе (Вигдорович В.И., Насыпайко И.Г., Прохоренков В.Д. Антикоррозионные консервационные материалы// М.: Агропромиздат, 1987. 127 с.). Однако одни из них в постреформенное время не производятся, основой других являются товарные нефтяные масла (Вигдорович В.И., Трифонова О.И., Поликарпов В.М. // Химия и химическая технология. 2005. Т.48, №6, с.75-78) или экологически недостаточно чистые отработавшие моторные и индустриальные масла (Вигдорович В.И., Прохоренков В.Д., Князева Л.Г. // Практика противокоррозионной защиты. 2005. №4, с.49-55). Минеральные масла имеют целый ряд недостатков: высокая, постоянно возрастающая стоимость; наличие в них комплекса заводских добавок неизвестной природы и токсикологии; наличие многочисленных экологических проблем, связанных с их обезвреживанием и утилизацией; многокомпонентность состава и необходимость введения значительных концентраций дефицитных ингибиторов коррозии, потребность в которых в Российской Федерации удовлетворяется на 10-15%.
Наиболее близким по технической сущности является способ защиты от атмосферной коррозии нанесением на поверхность стали цинкнаполненных лакокрасочных покрытий, содержащих 90-95 мас.% цинка (Фринсберг И.В., Субботина О.Ю., Павлюкова С.Ю. // Коррозия: материалы, защита. 2004. №2. с.26-37.). Однако подобные составы непригодны в условиях многократной консервации и переконсервации, так как не подлежат быстрому снятию растворителями и повторному нанесению.
Целью изобретения является долговременная защита металлоизделий из углеродистой стали от атмосферной коррозии, в том числе в условиях морского, субтропического и тропического климата и возможного существенного подкисления поверхностных пленок влаги при периодическом выпадении кислотных дождей.
Отличительными признаками предлагаемого способа является использование цинкнаполненных масляных композиций, состоящих из рапсового масла и 50±10 мас.% порошка цинка, наносимых толщиной 90±10 мкм, снимаемых растворителями и позволяющих проводить многократную переконсервацию на основе экологически чистого быстро возобновляемого рапсового масла.
Указанные отличительные признаки предлагаемого способа защиты углеродистой стали определяют его новизну и изобретательский уровень в сравнении с известными методами защиты составами на масляной основе, так как цинкнаполненное масляное покрытие толщиной 90±10 мкм обладает защитным эффектом, обеспечивающим долговременную противокоррозионную защиту, обусловленную не только блокировочным действием масла, но и высоким протекторным действием порошка цинка. Это позволяет существенно повысить защитную эффективность, в том числе и в условиях морского, субтропического и тропического климата и выпадения кислотных дождей при хранении металлоизделий под навесом и в неотапливаемом помещении, расположенных даже навалом и в стеллажах на предприятиях госрезерва.
Технической задачей является разработка способа защиты углеродистой стали от атмосферной коррозии в обычных, жестких и особо жестких условиях. Решается эта задача созданием высокого протекторного эффекта защитного покрытия в результате введения в экологически чистое рапсовое масло цинкового протектора, обусловливающего катодную защиту (жертвенный анод) углеродистой стали в условиях, позволяющих проводить многократную переконсервацию.
Наличие длительного защитного эффекта за счет введения анодноактивного компонента в масляное покрытие, а также барьерного действия пленки масляной композиции толщиной 90±10 мкм определяет сущность способа. Таким компонентом является цинковый порошок, производимый в промышленности, следующего фракционного состава (по величинам эффективного диаметра), мкм: до 3 - 50,5%; 3…4 - 41,5%; 4…10 - 1,3%; 10…25 - 1%; 25…75 - 0,4%; остальное - более 75.
Для подтверждения высокой защитной эффективности проведены длительные коррозионные испытания в термовлагокамере при периодическом изменении температуры (от 20 до 40°С и обратно), относительной влажности воздуха (от 70% при Т=20°С до 100% при Т=40°С) и длительных натурно-стендовых испытаниях в атмосфере промышленного химического предприятия (анилино-красочного завода).
Образцы углеродистой стали размером 150×70×3 мм полировали до 6-го класса чистоты, обезжиривали ацетоном, сушили фильтровальной бумагой и взвешивали на аналитических весах с точностью до 5·10-5 г. Для нанесения и формирования на них пленки защитного покрытия образцы опускали в ванну консервации с механически перемешанным составом (5 кг рапсового масла и 5 кг цинкового порошка промышленного производства без разделения его на фракции), находящимся при температуре 20±2°С. Затем извлекали из нее и оставляли на 2 часа на воздухе в помещении лаборатории в вертикальном положении для отекания избытка композиции и формирования защитной пленки толщиной 90±10 мкм. Толщину (L) сформировавшейся пленки оценивали гравиметрически, полагая слой равномерным по толщине, по формуле
L=104·(m1-m0)/ρ·S, мкм,
где m1 и m0 - соответственно масса образца с нанесенной защитной пленкой и без нее, г; ρ - эффективная плотность состава, г/см3; S - видимая поверхность образца, см2.
Каждый эксперимент дублировался по 6 раз для проведения статистической обработки результатов по методу малых выборок с доверительной вероятностью 95% (коэффициент Стьюдента - 2,447). Коррозионные потери массы оценивали весовым методом также с точностью 5·10-5 г. С этой целью образцы взвешивали до нанесения покрытия (масса m0) и после удаления с них продуктов коррозии по завершении испытаний (масса mк). Потери массы Δm в результате коррозии составляют
Δm=m0-mк
Скорость коррозии рассчитывали по формуле
Ki=Δm/(S·τ), г/(м2·ч),
где τ - продолжительность испытаний, ч; Ki - скорость коррозии незащищенной (К0) и защищенной (Кз) исследуемыми составами на базе рапсового масла стали.
Далее оценивали коэффициент понижения скорости коррозии (γ, раз), равный
γ=К0/Кз.
Защитное действие составов, содержащих 40, 50 и 60 мас.% цинка в рапсовом масле, приведено в таблицах 1 и 2.
В неотапливаемом помещении полная защита углеродистой стали от коррозии композициями на основе цинкнаполненного (40, 50, 60 мас.%) рапсового масла наблюдается в течение 3-х лет. Далее испытания прекращались.
Снижение рН агрессивной среды на фоне 3%-ного раствора NaCl с 6,5 до 3, то есть повышение кислотности в 1000 и более раз, не снижает защитного действия составов, так как коррозия стали в этих условиях протекает с кислородной деполяризацией.
Из приведенных экспериментальных данных следует, что предлагаемый способ защиты углеродистой стали от атмосферной коррозии в жестких и особо жестких условиях (рН 3…6,5) является эффективным, доступным и технологичным.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЗАЩИТЫ СТАЛИ ОТ АТМОСФЕРНОЙ КОРРОЗИИ ПЛЕНКАМИ РАПСОВОГО МАСЛА | 2011 |
|
RU2477764C2 |
СПОСОБ ЗАЩИТЫ МЕТАЛЛОИЗДЕЛИЙ ОТ АТМОСФЕРНОЙ КОРРОЗИИ В УСЛОВИЯХ СОЛЕВОГО ТУМАНА | 2010 |
|
RU2432387C1 |
Ингибитор анодного действия подземной коррозии стали | 2021 |
|
RU2771344C1 |
Защитное покрытие стального трубопровода от подземной коррозии | 2021 |
|
RU2760783C1 |
Защитное покрытие стального трубопровода от подземной коррозии | 2020 |
|
RU2760782C1 |
ЗАЩИТНАЯ СМАЗКА ДЛЯ МЕТАЛЛИЧЕСКИХ ДЕТАЛЕЙ | 2014 |
|
RU2554007C1 |
СПОСОБ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОЧНЫХ И ПИТЬЕВЫХ ВОД НА ГЛАУКОНИТЕ ОТ КАТИОНОВ ЖЕЛЕЗА (II) | 2011 |
|
RU2483027C1 |
СПОСОБ ЛЕЧЕНИЯ ОЖОГОВ СТЕПЕНИ 3А ПОСРЕДСТВОМ НАНЕСЕНИЯ ПРИСЫПКИ ГЛАУКОНИТА | 2020 |
|
RU2760838C1 |
ИНГИБИТОР КОРРОЗИИ ПОРИСТЫХ СПЕЧЕННЫХ МАТЕРИАЛОВ | 1993 |
|
RU2038419C1 |
Способ получения антикоррозионной композиции | 2022 |
|
RU2786285C1 |
Изобретение относится к области защиты металлоизделий от атмосферной коррозии при хранении их на открытых площадках, в неотапливаемом помещении, а также в штабелях в процессе длительного хранения в условиях создания запаса госрезерва в жестких и особо жестких условиях тропического, субтропического и морского климата, связанных с повышенными температурами, высокой относительной влажностью и возможным подкислением поверхностной пленки влаги за счет выпадения кислотных дождей, и может быть использовано в машиностроении, металлургии, в сельскохозяйственном производстве и на предприятиях госрезерва. Способ защиты углеродистой стали от атмосферной коррозии включает нанесение покрытия толщиной 90±10 мкм, состоящее из рапсового масла и 50±10 мас.% порошка цинка. Способ допускает многократную переконсервацию цинкнаполненного покрытия на основе рапсового масла и обеспечивает в течение длительного времени торможение скорости атмосферной коррозии углеродистой стали за счет высокого протекторного эффекта. 2 табл.
Способ защиты углеродистой стали от атмосферной коррозии в жестких и особо жестких условиях посредством нанесения покрытия, отличающийся тем, что наносят покрытие толщиной 90±10 мкм, состоящее из рапсового масла и 50±10 мас.% порошка цинка.
ФРИНСБЕРГ И.В | |||
и др | |||
Коррозия: материалы, защита | |||
- М., 2004, №2, с.26-37 | |||
АНТИКОРРОЗИОННЫЙ СОСТАВ ДЛЯ ПОКРЫТИЙ | 2008 |
|
RU2378305C1 |
Устройство для охлаждения водою паров жидкостей, кипящих выше воды, в применении к разделению смесей жидкостей при перегонке с дефлегматором | 1915 |
|
SU59A1 |
Способ непрерывной варки сырья в спиртовом производстве | 1948 |
|
SU77126A1 |
Авторы
Даты
2013-05-20—Публикация
2011-10-13—Подача