СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО КАТОДА Российский патент 2013 года по МПК B23K1/20 C23C14/34 

Описание патента на изобретение RU2486995C2

Изобретение относится к пайке и может быть использовано, в частности, для изготовления композиционных катодов из тугоплавких материалов, применяемых для вакуумного нанесения тонкопленочных покрытий различного функционального назначения в машиностроении, микроэлектронике, приборостроении, электротехнике.

Для получения тонкопленочных покрытий необходимы композиционные катоды, обеспечивающие возможность формирования сложных покрытий различного стехиометрического состава и нанесения адгезионно прочных покрытий.

Высокое качество работы композиционного катода достигается за счет хорошей сопротивляемости к динамическим воздействиям, к искрению, бомбардировке и другим разрушающим факторам, а также способности работать при температурах, более высоких, чем средняя рабочая температура, и рассеивать дополнительные большие мощности, вносимые обратной бомбардировкой электронов.

Создание композиционных катодов необходимо для хрупких и труднодеформируемых материалов, из которых невозможно изготовление стандартной конструкции катода.

Практика показывает, что наиболее эффективным способом получения композиционного катода является пайка разнородных катодных материалов.

Известен способ пайки труднопаяемых материалов, заключающийся в подготовке (очистке) поверхности материалов под последующую пайку (заявка RU №93009686, кл. B23K 1/20, от 24.02.1993 г.). Паяемые элементы облуживают легкоплавкими эвтектическими сплавами висмута, индия, олова, кадмия, свинца, галлия на воздухе при температуре до 60°C и выдерживают при этой же температуре в течение 0,5-1,5 ч. После такого облуживания становится возможной пайка металлокерамическими (диффузионно-твердеющими) или мягкими (свинцово-оловянными) припоями.

Известен способ пайки разнородных соединений циркония, где путем регулирования процесса взаимодействия циркония с припоем и паяемым металлом достигается повышение качества паяных соединений циркония с рядом конструкционных металлов (патент RU №2074797, кл. B23K 1/20, от 12.10.1994 г.). Последнее достигается за счет двухэтапности образования соединения: создания жидкометаллического барьерного слоя из легкоплавкого металла на цирконии - на первом этапе, и процесс пайки облуженного циркония с другим конструкционным металлом в вакууме в заданном температурно-временном диапазоне (973-1073 К и 1-3 мин), обеспечивающем условия для диспергирования конструкционного металла в легкоплавком припое с последующим охлаждением разнородного соединения, - на втором.

Известен способ пайки металлов, преимущественно деталей летательных аппаратов из титана и его сплавов, с предварительной металлизацией соединяемых поверхностей, при котором детали помещают в нагревательную среду, отличающийся тем, что, с целью повышения качества соединения, в нагревательную среду вводят ультразвуковые колебания (патент RU №211289, кл. B23K 1/06, от 12.08.1996 г.).

Экспериментальные работы, проведенные в области создания композиционных припоев, показали, что известные способы имеют следующий недостаток: при предварительном облуживании или металлизации основания катода диффузия наносимого материала на катод минимальна и пайка легкоплавкими припоями композиционного катода не обеспечивает требуемых прочностных характеристик паяного соединения при его работе в магнетроне.

Наиболее близким к заявляемому и взятым нами за прототип является способ соединения элементов композиционной мишени из тугоплавкого и труднодеформируемого материалов.

Способ основан на подготовке (очистке) контактных поверхностей и соединении их пайкой (патент RU №2104130, кл. B23K 1/00, от 01.08.1996 г.). Пайку проводят аморфным припоем. Паяемые элементы нагревают до температуры 0,4-0,6 температуры ликвидуса припоя. Производят первую изотермическую выдержку в течение 20-30 мин. Нагревают паяемые элементы до температуры 1,1-1,2 температуры ликвидуса припоя, производят вторую изотермическую выдержку в течение 5,0-2,0 мин и охлаждают в два этапа. Пайку ведут порошком сплава системы медь-никель-фосфор фракции 20-100 мкм из ленты толщиной 30-50 мкм.

В прототипе используется пайка разнородных материалов, таким образом, что паяное соединение представляет из себя многослойную композиционную составляющую из распыляемого материала, самостоятельной фазы и поверхности основания мишени. Наличие указанных гетерофазных переходов и связанная с этим существенная разница в коэффициенте термического расширения этих материалов приводит, во-первых, к резкому повышению переходного электросопротивления. Это обстоятельство вызывает заметную нестабильность процесса напыления. Во-вторых, возникают так называемые коэффициентные напряжения, которые приводят к расслаиванию паяного шва и выходу из строя катода в процессе эксплуатации.

Техническим результатом изобретения является разработка технологии пайки композиционного катода из тугоплавких материалов, используемого для вакуумного нанесения тонкопленочных покрытий различного функционального назначения, обеспечивающего получение паяного соединения с высокой механической прочностью.

Технический результат достигается за счет нанесения на основание катода методом холодного газодинамического напыления аморфного припоя, а на поверхность тыльной стороны распыляемой части катода - двухкомпонентного функционально-градиентного покрытия, в котором в качестве первой компоненты используют компоненту, из которой выполнена распыляемая часть катода, причем содержание материала первой компоненты изменяют по линейному закону от 100% на поверхности тыльной стороны распыляемой части катода до 0% на поверхности получаемого покрытия, а в качестве второй компоненты используют компоненту, из которой изготовлено основание катода, причем содержание материала второй компоненты изменяют от 0% на поверхности тыльной стороны распыляемой части катода до 100% на поверхности получаемого покрытия.

Согласно методу холодного газодинамического напыления частицы материала покрытия ускоряют посредством их введения в распылительное сопло с холодным газом в направлении к снабжаемой покрытием поверхности детали. В данном случае метод холодного газодинамического напыления включает в себя подачу из дозатора №1 первого компонента, родственного материалу распыляемой части катода, обеспечивающего формирование подслоя, имеющего хорошую адгезию с материалом распыляемой части катода. Затем совместно из дозатора №1 и №2 наносят двухкомпонентное функционально-градиентное покрытие, являющееся подслоем для нанесения второй компоненты, родственной материалу основания. После чего из дозатора №2 производят нанесение второго компонента на поверхность предыдущего подслоя.

Кроме того, технический результат достигается за счет выбора оптимального количества припоя, обеспечивающего 100% растворение припоя в подслое, сформированном на распыляемой и основной частях катода.

Припой наносится методом холодного газодинамического напыления на основание катода. Толщина припоя должна быть не более 10 мкм.

Пайку в предлагаемом способе ведут в вакууме, нагревая паяемые элементы до температуры, равной 0,6-0,7 температуре ликвидуса припоя. После чего производят первую изотермическую выдержку в течение 30-40 мин и охлаждают. Затем паяемые элементы нагревают до температуры, равной 1,1-1,2 температуре ликвидуса припоя, и производят вторую изотермическую выдержку в течение 15-20 мин и охлаждают.

Температурно-временной режим пайки выбран таким образом, чтобы за счет процессов диффузии количество припоя уменьшить до концентрации, соответствующей предельной растворимости последнего.

Пример осуществления способа

Для практического осуществления изобретения проводили пайку композиционного катода, состоящего из распыляемой части, выполненной из Ru методом прессования порошка и основания, выполненного из Ti.

Соединяемые детали представляли собой цилиндры для распыляемой части катода диаметром 50 мм и высотой 40 мм, а для основания катода диаметром 50 мм и высотой 10 мм.

На тыльную сторону распыляемой части катода методом холодного газодинамического напыления наносился порошок Ru, подача которого осуществлялась из дозатора №1, и при этом формировался подслой Ru, имеющий хорошую адгезию с материалом распыляемой части катода. Затем совместно из дозатора №1 и №2 наносилось двухкомпонентное функционально-градиентное покрытие, являющееся подслоем для нанесения Ti, при этом количество Ti изменялось от 0 до 100%. После чего из дозатора №2 производят Ti на поверхность предыдущего подслоя распыляемой части катода.

Перед пайкой с поверхности распыляемой части и основания катода удаляли загрязнения.

Припой марки СТЕМЕТ-1201 (система Ti-Zr-Ni-Cu) в виде порошка дисперсностью 20-30 мкм, полученного из аморфной ленты методом дезинтеграторной обработки, наносился методом холодного газодинамического напыления на титановое основание катода.

Собранные части композиционного катода размещали в рабочем объеме вакуумной печи электросопротивления типа СНВЭ. Пайку осуществляли в вакууме при остаточном давлении не выше 5×10-3 Па по следующему температурному режиму:

- нагрев до температуры 700°C со скоростью 20-40°C/мин;

- изотермическая выдержка при температуре 700° - 30-35 мин;

- нагрев до температуры 850°C со скоростью 20-40°C/мин;

- изотермическая выдержка при температуре 850°C - 20 мин;

- охлаждение до температуры 650°C со скоростью 5-10°C/мин;

- охлаждение от температуры 650°C с минимальной скоростью до комнатной температуры.

Похожие патенты RU2486995C2

название год авторы номер документа
СПОСОБ СОЕДИНЕНИЯ ЭЛЕМЕНТОВ КОМПОЗИЦИОННОЙ МИШЕНИ ИЗ ТУГОПЛАВКОГО И ТРУДНОДЕФОРМИРУЕМОГО МАТЕРИАЛОВ 1996
RU2104130C1
Слоистый припой для пайки нержавеющей стали 1988
  • Барвинок Виталий Алексеевич
  • Бордаков Павел Александрович
  • Куприн Олег Васильевич
  • Любимов Виктор Иванович
  • Самородов Дмитрий Васильевич
  • Ващенко Владислав Вячеславович
SU1618555A1
СПОСОБ РЕМОНТА ПОВЕРХНОСТНЫХ ДЕФЕКТОВ ДЕТАЛЕЙ МАШИН 2005
  • Тихомиров Александр Емельянович
  • Бабич Иван Игнатьевич
  • Рыльников Виталий Сергеевич
RU2310551C2
Гетерогенный активный припой для пайки металлокерамических и керамических вакуумно-плотных соединений 2019
  • Малыгин Валерий Дмитриевич
  • Русин Михаил Юрьевич
  • Терехин Александр Васильевич
  • Покровский Евгений Николаевич
  • Атюнина Светлана Александровна
RU2717766C1
Способ пайки 1982
  • Шапиро Александр Ефимович
SU1077727A1
БЫСТРОЗАКАЛЕННЫЙ ПРИПОЙ ИЗ СПЛАВА НА ОСНОВЕ ТИТАНА-ЦИРКОНИЯ 2013
  • Калин Борис Александрович
  • Федотов Владимир Тимофеевич
  • Севрюков Олег Николаевич
  • Сучков Алексей Николаевич
  • Федотов Иван Владимирович
  • Иванников Александр Александрович
RU2517096C1
АМОРФНЫЙ ЛЕНТОЧНЫЙ ПРИПОЙ НА ОСНОВЕ МЕДИ 2011
  • Калин Борис Александрович
  • Сучков Алексей Николаевич
  • Федотов Владимир Тимофеевич
  • Севрюков Олег Николаевич
  • Мазуль Игорь Всеволодович
  • Маханьков Алексей Николаевич
RU2464143C1
Способ получения быстрозакаленного безбористого припоя на основе никеля для пайки изделий из коррозионностойких сталей, припой, паяное соединение и способ его получения 2015
  • Иванников Александр Александрович
  • Калин Борис Александрович
  • Федотов Владимир Тимофеевич
  • Севрюков Олег Николаевич
  • Сучков Алексей Николаевич
  • Морохов Павел Владимирович
  • Федотов Иван Владимирович
  • Пенязь Милена Алексеевна
RU2625924C2
СПОСОБ ПАЙКИ ИЗДЕЛИЙ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ 1995
  • Семенов Виктор Никанорович
  • Баранов Евгений Иванович
  • Деркач Геннадий Григорьевич
  • Селезнев Евгений Петрович
  • Ковалев Николай Михайлович
RU2104836C1
ПРИПОЙ ДЛЯ ПАЙКИ АЛЮМИНИЯ И ЕГО СПЛАВОВ 2014
  • Степанов Владимир Валерьевич
  • Мироненко Виктор Николаевич
  • Васенев Валерий Валерьевич
  • Горностаев Игорь Николаевич
  • Бажанов Андрей Владимирович
  • Бутрим Виктор Николаевич
  • Леонов Сергей Тимофеевич
RU2596535C2

Реферат патента 2013 года СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО КАТОДА

Изобретение относится к пайке и может быть использовано, в частности, для изготовления композиционного катода из тугоплавких материалов, используемого для вакуумного нанесения тонкопленочных покрытий различного функционального назначения в отраслях машиностроения, микроэлектроники, приборостроении, электротехнике. Проводят подготовку контактных поверхностей элементов катода и соединяют их пайкой с использованием аморфного припоя. После подготовки контактных поверхностей на основание катода методом холодного газодинамического напыления наносят аморфный припой, а на поверхность тыльной стороны распыляемой части катода - двухкомпонентное функционально-градиентное покрытие. В упомянутом покрытии в качестве первой компоненты используют компоненту, из которой выполнена распыляемая часть катода, причем содержание материала первой компоненты изменяют по линейному закону от 100% на поверхности тыльной стороны распыляемой части катода до 0% на поверхности получаемого покрытия. В качестве второй компоненты используют компоненту, из которой изготовлено основание катода, причем содержание материала второй компоненты изменяют от 0% на поверхности тыльной стороны распыляемой части катода до 100% на поверхности получаемого покрытия. Получаются тонкопленочные покрытия различного функционального назначения, обеспечивающего получение паяного соединения с высокой механической прочностью. 3 з.п. ф-лы, 1 пр.

Формула изобретения RU 2 486 995 C2

1. Способ получения композиционного катода из тугоплавких материалов, при котором подготавливают контактные поверхности элементов катода и соединяют их пайкой с использованием аморфного припоя, отличающийся тем, что после подготовки контактных поверхностей на основание катода методом холодного газодинамического напыления наносят аморфный припой, а на поверхность тыльной стороны распыляемой части катода - двухкомпонентное функционально-градиентное покрытие, в котором в качестве первой компоненты используют компоненту, из которой выполнена распыляемая часть катода, причем содержание материала первой компоненты изменяют по линейному закону от 100% на поверхности тыльной стороны распыляемой части катода до 0% на поверхности получаемого покрытия, а в качестве второй компоненты используют компоненту, из которой изготовлено основание катода, причем содержание материала второй компоненты изменяют от 0% на поверхности тыльной стороны распыляемой части катода до 100% на поверхности получаемого покрытия.

2. Способ по п.1, отличающийся тем, что основание катода выполняют из титана, тыльную сторону его распыляемой части - из рутения, а в качестве двухкомпонентного функционально-градиентного покрытия наносят Ru-Ti покрытие.

3. Способ по п.1, отличающийся тем, что толщина напыляемого аморфного припоя составляет не более 10 мкм.

4. Способ по п.1, отличающийся тем, что в качестве аморфного припоя используют порошок системы Ti-Zr-Ni-Cu.

Документы, цитированные в отчете о поиске Патент 2013 года RU2486995C2

СПОСОБ СОЕДИНЕНИЯ ЭЛЕМЕНТОВ КОМПОЗИЦИОННОЙ МИШЕНИ ИЗ ТУГОПЛАВКОГО И ТРУДНОДЕФОРМИРУЕМОГО МАТЕРИАЛОВ 1996
RU2104130C1
СПОСОБ ПОЛУЧЕНИЯ НА ПОДЛОЖКЕ ЗАЩИТНЫХ ПОКРЫТИЙ С ГРАДИЕНТОМ ХИМИЧЕСКОГО СОСТАВА И СТРУКТУРЫ ПО ТОЛЩИНЕ С ВНЕШНИМ КЕРАМИЧЕСКИМ СЛОЕМ, ЕГО ВАРИАНТ 1997
  • Мовчан Борис Алексеевич
  • Рудой Юрий Эрнестович
  • Малашенко Игорь Сергеевич
RU2120494C1
СПОСОБ ПАЙКИ ЦИРКОНИЯ С КОНСТРУКЦИОННЫМ МЕТАЛЛОМ 1994
  • Чуларис А.А.
  • Михайлова М.М.
  • Томашевский В.М.
RU2074797C1
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННЫХ ФУНКЦИОНАЛЬНО-ГРАДИЕНТНЫХ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ 2007
  • Горынин Игорь Васильевич
  • Фармаковский Борис Владимирович
  • Геращенков Дмитрий Анатольевич
  • Васильев Алексей Филиппович
RU2354749C2
US 20030054171 A1, 20.03.2003
Пробоотборник 1985
  • Кунашкевич Сергей Владимирович
  • Снигирев Эдуард Сергеевич
SU1266979A1

RU 2 486 995 C2

Авторы

Бурканова Елена Юрьевна

Самоделкин Евгений Александрович

Фармаковский Борис Владимирович

Геращенков Дмитрий Анатольевич

Васильев Алексей Филиппович

Коркина Маргарита Александровна

Даты

2013-07-10Публикация

2011-10-03Подача