Изобретение относится к металлургии литейных сплавов на основе алюминия с повышенными технологическими и механическими свойствами, используемых в качестве конструкционных материалов в машиностроении и электротехнической промышленности.
Известен литейный сплав на основе алюминия (А.с. СССР №1803450, МПК C22C 21/04, 1993), содержащий, мас.%:
Известный сплав склонен к образованию газоусадочной пористости и обладает нестабильными пластическими и технологическими свойствами.
Известен также литейный сплав на основе алюминия (Патент РФ №2415193, МПК C22C 21/04, 2011), содержащий, мас.%:
Этот литейный сплав обладает низкой коррозийной стойкостью, имеет пониженную жидкотекучесть и недостаточную трещиностойкость. В стандартных технологических пробах на трещиностойкость при заливке в металлические формы образуются несколько трещин, имеющих общую длину до 14-20 см.
Наиболее близким по технической сущности и достигаемому эффекту к предложенному является литейный сплав на основе алюминия АЛ 30 (АК12ММгН) по ГОСТ 1583-93 следующего химического состава, мас.%:
При литье в кокиль отливки из известного сплава после закалки с температуры 520±5°C в воде и старения по режиму Т6 обладают следующими механическими и технологическими свойствами:
Недостатками известного литейного сплава на основе алюминия являются низкие характеристики коррозийной стойкости, трещиностойкости (11-15 см) и нестабильные технологические свойства.
Задачей данного технического решения является повышение трещиностойкости и технологических свойств.
Поставленная задача решается тем, что литейный сплав на основе алюминия, содержащий кремний, медь, магний, никель, марганец, железо, хром, цинк, титан, свинец дополнительно содержит бор, церий и азот при следующем соотношении компонентов, мас.%:
Проведенный анализ предложенного технического решения показал, что на данный момент не известны технические решения, в которых были бы отражены указанные отличия. Кроме того, указанные признаки являются необходимыми и достаточными для достижения положительного эффекта, указанного в цели изобретения. Это позволяет сделать вывод о том, что данные отличия являются существенными.
Дополнительное введение бора в литейный сплав в количестве 0,02-0,06 мас.% снижает газовыделение при кристаллизации, повышает дисперсность структуры, плотность, трещиностойкость и коррозионную стойкость отливок и предохраняет расплав от загорания. При содержании бора до 0,02 мас.% характеристики плотности, трещиностойкости и коррозионной стойкости недостаточны. При увеличении бора более 0,06 мас.% снижаются пластические и технологические свойства сплава.
Дополнительное введение церия в количестве 0,02-0,05 мас.% обусловлено высокой его модифицирующей и химической активностью, способностью кристаллизации структурных составляющих сплава в более компактной форме, что способствует повышению пластических, технологичнеких свойств и трещиностойкости. При содержании церия до 0,02 мас.% модифицирующий эффект недостаточен. При увеличении содержания церия более 0,06 мас.% повышается угар сплава и увеличивается газовыделение.
Дополнительное введение азота в количестве 0,02-0,05 мас.% обусловлено его рафинирующим влиянием, способностью очищать расплав от взвешенных оксидных (неметаллических) включений и образовывать дисперсные нитридные включения, что способствует повышению трещиностойкости и технологических свойств сплава в отливках. При концентрации азота до 0,02 мас.% количество нитридных включений и рафинирующий эффект не достаточны и технологические свойства отливок низкие. При увеличении содержания азота более 0,06 мас.% отмечается повышение угара магния и церия, что снижает пластические и технологические свойства сплава в отливках.
Для измельчения кристаллических зерен сплава в отливках, повышения плотности и коррозийной стойкости сплава содержание марганца в сплаве повышено до 0,3-1,2 мас.%. При увеличении содержания марганца более 1,2 мас.% снижаются характеристики трещиностойкости, пластических и технологических свойств. При концентрации марганца менее 0,3 мас.% плотность, коррозионная стойкость и прочностные свойства сплава недостаточны.
Повышение концентрации хрома до 0,3-0,5 мас.% обусловлено также существенным увеличением плотности и коррозионной стойкости сплава в отливках. При увеличении концентрации хрома более 0,5 мас.% снижаются литейные и пластические свойства. При снижении концентрации хрома менее 0,3 мас.% характеристики плотности, твердости и прочности недостаточны.
Содержание кремния (11-13 мас.%), меди (0,3-1,5 мас.%) и магния (0,8-1,3 мас.%) принято на основе практики производства термообрабатываемых отливок из литейных сплавов на основе системы Al-Si-Cu (алюминий-кремний-медь) с повышенной прочностью, твердостью и коррозионной стойкостью, сохраняющих постоянство размеров в процессе эксплуатации.
Для измельчения зерна и повышения пластических и технологических свойств в сплав вводят 0,22-0,35 мас.% титана, 0,3-0,5 мас.% цинка, 0,02-0,21 мас.% свинца и 0,5-1,2 мас.% никеля. При увеличении их концентрации более верхних пределов снижаются характеристики трещиностойкости, плотности и твердости. При содержании их менее нижних пределов пластические свойства, коррозионная стойкость и технологические свойства недостаточны.
Введение железа (0,3-0,8 мас.%) способствует повышению коррозионной стойкости, твердости и прочности. В зависимости от содержания железа, марганца и церия в отливках образуются как игольчатые выделения типа Al-Fe-Si (алюминий-железо-кремний), снижающие трещиностойкость, пластические и технологические свойства, так и более дисперсные и компактные выделения типа (Al, Mn, Fe, Si, Ce), способствующие повышению пластических, технологических свойств и коррозионной стойкости. При концентрации железа менее 0,3 мас.% компактных выделений железистой составляющей не образуется и основными структурными составляющими сплава являются фазы S (Al2CuMg) и Al3(Ni,Cu)2, которые снижают пластические свойства и трещиностойкость. При увеличении концентрации железа более 0,8 мас.% повышается содержание игольчатых выделений типа В (Al-Fe-Si), снижающих пластические свойства, трещиностойкость и обрабатываемость резанием на металлорежущих станках.
Опытные плавки литейных сплавов проводились в тигельных индукционных печах ИАТ-2,5. В качестве шихтовых материалов использовали чушки алюминиевого сплава АК12ММгН (50% от металлозавалки), возврат собственного производства из сплава АЛ30 (45% от металлозавалки) и легирующие и модифицирующие добавки (5% от металлозавалки). Медь и ферробор вводят в расплав при температуре 790-800°C, а церий и магниевую лигатуру - в конце плавки перед сливом расплава. Максимально допустимый перегрев расплава в печи - 860-880°C. Продувку расплавов азотом производят в миксерах (раздаточных печах) после рафинирования гексахлорэтаном и серой.
Разливку литейных сплавов производят в металлические формы после восстановления под шлаком в течение 10-15 минут для получения звездообразных технологических проб на трещиностойкость, стандартных технологических проб на жидкотекучесть, образцов и деталей.
В таблице 1 приведены химические составы сплавов опытных плавок.
В таблице 2 приведены механические и технологические свойства этих сплавов.
Как видно из таблицы 2 предложенный сплав обладает более высокими характеристиками механических свойств, трещиностойкости и технологических свойств.
название | год | авторы | номер документа |
---|---|---|---|
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2000 |
|
RU2184166C2 |
Литейный высококремнистый сплав на основе алюминия | 2015 |
|
RU2616734C1 |
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ | 2003 |
|
RU2264479C2 |
Высокопрочный антифрикционный чугун | 2015 |
|
RU2615409C2 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 2014 |
|
RU2576286C2 |
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА | 2010 |
|
RU2431692C1 |
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ | 2003 |
|
RU2237741C1 |
ЛИТЕЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ | 1996 |
|
RU2112069C1 |
Высокопрочный чугун | 1990 |
|
SU1749294A1 |
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ ПОЛУЧЕНИЯ ПРОПИТКОЙ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С УГЛЕГРАФИТОВЫМ КАРКАСОМ | 2014 |
|
RU2555737C1 |
Изобретение относится к металлургии литейных сплавов на основе алюминия и может быть использовано при изготовлении конструкционных материалов для машиностроения и электрической промышленности. Сплав содержит следующие компоненты, мас.%: кремний 11-13, медь 0,8-1,5, магний 0,8-1,3, никель 0,5-1,2, марганец 0,3-1,2, железо 0,3-0,8, хром 0,3-0,5, цинк 0,3-0,5, титан 0,22-0,35, свинец 0,02-0,21, бор 0,02-0,06, церий 0,02-0,05, азот 0,02-0,05, алюминий остальное. Изобретение направлено на получение литейного сплава с высокими механическими свойствами, такими как трещиностойкость, прочность, твердость, относительное удлинение. 2 табл.
Литейный сплав на основе алюминия, содержащий кремний, медь, магний, никель, марганец, железо, хром, цинк, титан, свинец, отличающийся тем, что он дополнительно содержит бор, церий и азот при следующем соотношении компонентов, мас.%:
Литейный сплав на основе алюминия | 1991 |
|
SU1803450A1 |
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 2009 |
|
RU2415193C1 |
ГЕТЕРОГЕННЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 1996 |
|
RU2092604C1 |
СПОСОБ ПОЛУЧЕНИЯ АНТГЕЛЬМИНТНОГО СРЕДСТВА "ПИПРЕМ" | 1991 |
|
RU2070036C1 |
US 20080031768 A1, 07.02.2008. |
Авторы
Даты
2013-08-20—Публикация
2012-04-16—Подача