СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ТИПА ШТОКОВ Российский патент 2013 года по МПК C21D1/06 C21D1/46 C21D1/42 C21D9/28 

Описание патента на изобретение RU2491355C1

Изобретение относится к металлургии и может использоваться при комбинированном упрочнении изделий с повышенной износостойкостью.

Известен способ термической обработки штоков [1], включающий закалку стали на мартенсит до температуры, превышающей А3, затем следует подогрев всего сечения изделия до 130-250°С и скоростной нагрев (10-50°С/сек) до температуры T1 - 30°С с последующей повторной закалкой.

Недостатками способа являются низкие эксплуатационные свойства (срок службы 1 год), низкая твердость и прочность штоков.

Техническим результатом предлагаемого изобретения является повышение эксплуатационных и физико-механических свойств штоков введением поверхностной закалки токами высокой частоты, что увеличивает срок службы штоков до 5 лет и повышает физико-механические свойства.

Техническая задача решается тем, что в способ термической обработки изделий типа штоков, включающий нагрев под закалку в соляных ваннах, охлаждение, отпуск и отмывку, затем производят поверхностную закалку поверхности при t=950-1000°С токами высокой частоты при частоте вращения детали 100-130 мин-1 и скорости перемещения 250-320 мин/м.

Для пояснения способа на фиг.1 показана исходная структура образца, увеличение 500., на фиг.2 показана микроструктура упрочненного слоя образца, закаленного по 2 режиму, а - поверхностный слой, б - сердцевина, увеличение 630.

Способ осуществляют следующим образом:

Детали: образцы из стали 5, ⌀16 штоки компрессионной установки

1. Нагрев до 880°С в растворе 75% BaCl2+25% NaCl выдержка 8 минут.

2. Закалка в масло индустриальное И-20.

3. Отпуск в расплаве солей 50% KNO3+50% NaNO3 при 550°С два крата по 60 минут.

4. Отмывка солей.

5. Поверхностная закалка токами высокой частоты по различным режимам.

Повышение износостойкости штока обеспечивается за счет упрочнения поверхности, которую выявили при микроскопическом анализе.

Изучение микроструктуры упрочненных образцов проводили на металлографическом микроскопе ММР-2 с последующим фотографированием.

Анализ микроструктур показывает, что в процессе поверхностной закалки происходит измельчение зерен с поверхности, по краю образца структура ничем не отличается от той, которая в сердцевине, то есть имеет место однородная структура.

После проведения поверхностной закалки ТВЧ мы видим совершенно другую микроструктуру края образцов, получилась переходная зона, которая образовалась в процессе поверхностной закалки. Структура упрочненного слоя представляет собой мелкоигольчатый мартенсит с твердостью 66,5 HRC, структура сердцевины осталась без изменения.

По результатам анализа микроструктуры закаленных образцов штоков, можно сделать вывод, что наиболее благоприятной структурой обладают образцы, прошедшие поверхностную закалку ТВЧ по режиму 1 при частоте вращения детали n=130 мин-1 и перемещении S=320 мм/мин, что соответствует температуре нагрева от 950 до 980°С, время перемещения 20 с. Также данный образец имеет небольшую переходную зону 1,2-1,5 мм, с твердостью 45-50 HRC. По сравнению с другими образцами, этот образец имеет более равномерное распределение твердости как на поверхности, так и в области переходной зоны, и более равномерную глубину закаленного слоя и переходной зоны. Величина коробления составляет в пределах до 0,05 мм.

После закалки на поверхности измерили твердость по методу Роквелла. Результаты представлены в таблице 1.

Таблица 1 № образца Твердость на поверхности, HRC 1 укол 2 укол 3 укол Средняя 1 45 44 50 46 2 43 43 47 44 3 48 55 54 52 4 43 56 45 48 5 48 53 48 50 6 49 51 49 50 7 49 55 52 52 8 46 49 48 48

По режиму 2 поверхностной закалки (S=300 мм/мин, n=115 мин-1) температура нагрева составляла примерно 980-1000°С, время перемещения детали 22 с. Результаты представлены в таблице 2.

Таблица 2 № образца Твердость на поверхности, HRC 1 укол 2 укол 3 укол Средняя 1 57 59 59 58 2 55 60 60 57 3 60 60 60 60 4 60 59 59 59 5 52 55 58 55 6 57 58 61 59 7 54 58 59 55 8 55 59 58 57

При этом структура переходной зоны представляла собой трооститную смесь. Твердость переходного слоя составляет от 55 до 60 HRC.

По режиму 3 поверхностной закалки (S=250 мм/мин, n=100 мин-1) температура нагрева составляла примерно 1000°С, время перемещения детали 24 с. Результаты представлены в таблице 3.

Таблица 3 № образца Твердость на поверхности, HRC 1 укол 2 укол 3 укол Средняя 1 64 66 60 63 2 62 60 67 63 3 67 67 68 67 4 67 67 69 68 5 59 61 65 62 6 65 68 68 67 7 61 63 59 61 8 60 66 64 63

При этом структура переходной зоны представляла собой трооститно-сорбитную смесь. Твердость переходного слоя составляет от 60 до 69 HRC.

В связи с поверхностной закалкой максимальная глубина прокаливания составляет от 0,2 до 0,5 мм и данный поверхностный слой имеет более высокую твердость, при этом площадь живого сечения снижается всего на 12%, что не существенно может сказаться на снижение ударной вязкости.

Таким образом, по сравнению с прототипом, заявляемый способ термической обработки изделий типа штоков, вследствие использования после изотермической закалки поверхностной закалки токами высокой частоты, обеспечивает повышение твердости в 2 раза и сроков эксплуатации в 5 раз за счет использования поверхностной закалки токами высокой частоты, что повышает физико-механические свойства штоков в 2-3 раза, что отражено в таблице 4.

Таблица 4 Режим t, °C n, мин-1 Твердость, HRC Прототип - - 20 Заявляемый 1 режим 950-980 130 40-45 Заявляемый 2 режим 980-1000 115 55-60 Заявляемый 3 режим 1000 100 60-65

Похожие патенты RU2491355C1

название год авторы номер документа
Способ производства мелющих шаров 2022
  • Адигамов Руслан Рафкатович
  • Андреев Антон Романович
  • Никишин Игорь Александрович
  • Жителев Павел Сергеевич
  • Карлина Антонина Игоревна
  • Манаков Дмитрий Геннадьевич
  • Родина Лариса Альбертовна
  • Кайрис Ян Олегович
RU2801912C1
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННЫХ СТАЛЕЙ 2007
  • Каблов Евгений Николаевич
  • Шалькевич Андрей Борисович
  • Уткина Александра Николаевна
  • Банас Игорь Павлович
  • Верещагина Алла Андреевна
  • Коробова Елена Николаевна
RU2358019C1
СПОСОБ ИЗГОТОВЛЕНИЯ РАБОЧИХ ОРГАНОВ ПОЧВООБРАБАТЫВАЮЩИХ МАШИН 2013
  • Зайцев Александр Иванович
  • Родионова Ирина Гавриловна
  • Павлов Александр Александрович
  • Амежнов Андрей Владимирович
  • Бакланова Ольга Николаевна
  • Быков Анатолий Андрианович
  • Гришин Александр Владимирович
  • Брюнина Галина Владимировна
RU2528687C1
КОРРОЗИОННО-СТОЙКАЯ ДИСПЕРСИОННО-ТВЕРДЕЮЩАЯ СТАЛЬ 2005
  • Каблов Евгений Николаевич
  • Белякова Валентина Ивановна
  • Ковалев Игорь Евгеньевич
  • Верещагина Алла Андреевна
  • Шалькевич Андрей Борисович
  • Уткина Александра Николаевна
  • Коробова Елена Николаевна
  • Банас Игорь Павлович
RU2296177C1
Способ термообработки чугуна с шаровидным графитом, включениями эвтектического цементита и бейнитно-аустенитной металлической основой 2018
  • Костылева Людмила Венедиктовна
  • Гапич Дмитрий Сергеевич
  • Моторин Вадим Андреевич
  • Грибенченко Алексей Викторович
RU2681076C1
ЛЕГИРОВАННЫЕ СТАЛИ И ИНСТРУМЕНТЫ ИЛИ ДЕТАЛИ, ИЗГОТОВЛЕННЫЕ ИЗ ЛЕГИРОВАННОЙ СТАЛИ 2006
  • Йонсон Леннарт
  • Сандберг Одд
RU2420602C2
Способ формирования износостойкого покрытия и коррозионно-стойкого покрытия на поверхности изделий из стали 2021
  • Соколов Александр Григорьевич
  • Бобылев Эдуард Эдуардович
  • Попов Роман Андреевич
RU2768647C1
СТАЛЬ С ПОНИЖЕННОЙ ПРОКАЛИВАЕМОСТЬЮ ДЛЯ ВИНТОВЫХ ПРУЖИН С ДИАМЕТРОМ ПРУТКОВ ОТ 24 ДО МЕНЕЕ 27 ММ И ПРУЖИНА, ИЗГОТОВЛЕННАЯ ИЗ НЕЕ 2013
  • Андреев Александр Александрович
RU2568405C2
СПОСОБ ИЗГОТОВЛЕНИЯ УПРУГОЙ КЛЕММЫ ДЛЯ РЕЛЬСОВОГО СКРЕПЛЕНИЯ И УПРУГАЯ КЛЕММА 2012
  • Аксенов Юрий Николаевич
  • Богачев Андрей Юрьевич
  • Федин Владимир Михайлович
  • Вакуленко Сергей Петрович
  • Тихонов Дмитрий Петрович
  • Дьяков Александр Васильевич
  • Прокофьев Андрей Дмитриевич
RU2512695C1
СТАЛЬ ДЛЯ ВИНТОВЫХ ПРУЖИН С ДИАМЕТРОМ ПРУТКОВ 27-33 мм И ПРУЖИНА, ИЗГОТОВЛЕННАЯ ИЗ НЕЕ 2007
  • Андреев Александр Петрович
  • Андреев Александр Александрович
  • Бочкарев Вячеслав Николаевич
  • Чижов Василий Алексеевич
  • Федин Владимир Михайлович
  • Борц Алексей Игоревич
  • Ушаков Борис Константинович
  • Решетников Сергей Анатольевич
  • Мулюкин Иван Степанович
  • Мацкевич Владимир Викторович
RU2370565C2

Иллюстрации к изобретению RU 2 491 355 C1

Реферат патента 2013 года СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ТИПА ШТОКОВ

Изобретение относится к металлургии и может использоваться при термической обработке изделий типа штоков. Для повышения физико-механических свойств штоков и увеличения срока службы осуществляют нагрев штока под закалку в соляных ваннах, охлаждают, затем подвергают отпуску и отмывке. После отмывки проводят поверхностную закалку штока с нагревом токами высокой частоты до температуры 950-1000°С при частоте вращения изделия n=100-130 мин-1 и перемещении S=250-320 мм/мин. 4 табл., 2 ил.

Формула изобретения RU 2 491 355 C1

Способ термической обработки изделия типа штока, включающий нагрев под закалку в соляной ванне, охлаждение, отпуск, отмывку и дополнительную закалку, отличающийся тем, что дополнительную закалку осуществляют путем нагрева поверхности штока токами высокой частоты до 950-1000°С при частоте его вращения 100-300 мин-1 и скорости перемещения 250-320 мм/мин.

Документы, цитированные в отчете о поиске Патент 2013 года RU2491355C1

Способ термической обработки изделий из конструкционных сталей 1974
  • Кальнер Вениамин Давидович
  • Ковригин Валерий Анатольевич
SU487144A1
Способ термической обработки стальных изделий 1968
  • Хаит И.Г.
  • Мулин Н.М.
  • Гузеев Е.А.
  • Вологдин В.В.
  • Головин Г.Ф.
  • Евангулова Е.П.
  • Жуков А.И.
  • Стычинский Л.П.
  • Эрлих М.Г.
  • Борковский Ю.З.
SU433815A1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КОНСТРУКЦИОННЫХ СТАЛЕЙ 0
SU290925A1
Способ термической обработки аустенитного дисперсионно-твердеющего сплава 1982
  • Бузина Юлия Антоновна
  • Никонорова Анна Ивановна
  • Бизина Нина Игнатьевна
SU1142516A1
СПОСОБ УПРОЧНЕНИЯ ИЗДЕЛИЙ 2005
  • Баранов Владимир Степанович
  • Лашкевич Олег Евгеньевич
  • Тарарук Аркадий Иванович
  • Саломатин Александр Владимирович
RU2309988C2
US 3131097 A, 28.04.1964.

RU 2 491 355 C1

Авторы

Богодухов Станислав Иванович

Проскурин Александр Дмитриевич

Козик Елена Станиславовна

Лобода Сергей Александрович

Солосина Екатерина Валерьевна

Даты

2013-08-27Публикация

2012-03-05Подача