Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, в частности, к сталям, которые могут быть использованы для изготовления рабочих колес гидротурбин и насосов, работающих в условиях циклических знакопеременных нагрузок, кавитационной эрозии и интенсивного коррозионного воздействия в пресной воде.
Известны для этих целей коррозионностойкие стали мартенситно-ферритного класса 08Х14НД и 10Х12НД по ГОСТ 977-88. Эти стали обладают достаточно высоким уровнем механических свойств, хорошей коррозионной стойкостью и хорошей технологичностью при изготовлении литых деталей. Однако известные марки сталей не обеспечивают необходимого уровня коррозионной усталости и * недостаточно технологичны при обработке давлением и сварке. Кроме того, имеют недостаточно высокую ударную вязкость при отрицательных температурах.
Известна коррозионностойкая сталь мартенситно-аустенитного класса, содержащая углерод, кремний, марганец, хром, никель, медь, молибден, кальций, иттрий и железо при следующем соотношении компонентов, мас.%:
(SU 665018, C22C 38/44, опубликовано 30.05.1979)
Недостатком данной стали является повышенное содержание 6-феррита, что не обеспечивает достаточной пластичности стали, что в свою очередь понижает деформируемость стали, вызывая образование трещин на заготовках. Кроме того, сталь не обладает требуемой ударной вязкостью при отрицательных температурах и высокой кавитационной стойкостью.
Наиболее близкой по технической сущности и достигаемому результату является высокопрочная коррозионностойкая сталь CA6NM/Grade А, содержащая углерод, кремний, марганец, хром, никель, молибден, медь, вольфрам, ванадий серу, фосфор при следующем соотношении компонентов, мас.%:
(ASTM A487/А487М. Version 93)
Сталь CA6NM после окончательной термообработки имеет предел текучести не менее 550 МПа, предел прочности не менее 760 МПа, относительное удлинение не менее 15%, относительное сужение не менее 35% и твердость 235 НВ. Однако при изготовлении больших отливок для рабочих колес гидротурбин и насосов в структуре металла появляется δ-феррита, который приводит к снижению коррозионно-усталостной прочности стали, кавитационной стойкости и падению ударной вязкости при отрицательных температурах.
Задачей изобретения и техническим результатом является создание высокопрочной коррозионностойкой стали с высокой пластичностью, повышенной ударной вязкостью при отрицательных температурах и высокой кавитационной стойкостью.
Технический результат достигается тем, что высокопрочная коррозионностойкая сталь содержит углерод, кремний, марганец, хром, никель, медь, молибден, серу, фосфор, церий, кальций, алюминий и железо, при следующем соотношении компонентов, мас.%:
Технический результат также достигается тем, что суммарное содержание церия, кальция и алюминия составляет 0,02-0,06 мас.%; содержание никеля [Ni] в стали связано с содержание хрома и молибдена [Cr+Mo] в стали следующим соотношением [Ni]=3,00+0,50{[Cr+Mo] - 12,25±0,25} мас.%.
Введение в состав стали алюминия в количестве 0,005-0,02 мас.% в сочетании с химически активными элементами кальцием и церием благоприятно изменяет форму неметаллических включений, снижает в стали содержание кислорода и серы, уменьшает количество сульфидных включений, очищает и упрочняет границы зерен и измельчает структуру литой стали, что приводит к повышению прочности, пластичности и ударной вязкости, особенно при низких температурах. Кальций и церий благоприятно воздействуют и на характер нитридных включений, способствуют переходу пленочных включений нитридов алюминия в глобулярные комплексы оксисульфонитридных образований.
При содержании Al менее 0,005 мас.% его воздействие на свойства стали малоэффективно, а при содержании его выше 0,02 мас.% вызывает избыточное обогащение границ зерен неметаллическими включениями, что отрицательно сказывается на свойствах стали. Кроме того, при избыточном содержании Al резко снижается разливаемость стали.
При суммарном содержании Al, Ca и Ce ниже 0,02 мас.% их воздействие па свойства стали малоэффективно, а при их суммарном содержании выше 0,06 мас.% вызывает избыточное обогащение границ зерен неметаллическими включениями, что отрицательно сказывается на свойствах стали, снижается коррозионно-усталостная прочность, кавитационная стойкость и ударная вязкость, особенно, при Отрицательных температурах.
Оптимальное содержание углерода 0,01-0,06 мас.% обеспечивает высокую технологичность стали и способствует получению высокой прочности, коррозионной и кавитационной стойкости, а также более высоких значений пластичности и ударной вязкости.
Содержанием кремния в пределах 0,10-0,40 мас.% обеспечивает эффективное раскисление. При более низком содержании кремния возможно появление газовых пузырей и ухудшение макроструктуры стали, что отрицательно повлияет на ее прочностные характеристики стали. При более высоком содержании кремния заметно снижается ударная вязкость и пластичность стали.
Содержание хрома 12,5-14,0 мас.% и никеля 3,00-4,50 мас.%, а также связь содержания никеля [Ni] в стали с содержанием хрома и молибдена [Cr+Mo] в стали соотношением [Ni]=3,00±0,50{[Cr+Mo]-12,25±0,25} мас.%, является оптимальным для получения стабильной мартенситной структуры стали с незначительным содержанием аустенита в пределах от 5 до 15%, что обеспечивает высокие механические свойства стали и ее высокую коррозионно-кавитационную стойкость.
Содержание меди 0,70-1,20 мас.% способствует повышению прочности за счет выделения интерметаллидных фаз и повышению коррозионно-кавитационной стойкости. Кроме того, наличие меди в таком количестве в стали способствует равномерности свойств в отливках разного сечения за счет обратной ликвации. Наличие меди, как аустенитизирующего элемента способствует образованию структуры мартенсита с аустенитом, без присутствия δ-феррита. Прослойки пластичной фазы аустенита являются препятствием для распространения трещин. Содержание меди более 1,20 мас.% снижает пластические свойства стали при ковке.
Содержания серы 0,001-0,01 мас.%, и фосфора 0,001-0,015 мас.%, способствует получению более высоких значений пластичности и ударной вязкости стали.
Ограничение содержания водорода до 0,00025 мас.% уменьшает вероятность образования флокенов и водородного охрупчивания стали. Заметное отрицательное влияние водорода проявляется при содержании его более 0,00025 мас.% и с ростом его концентрации изменяется характер разрушения стали - от вязкого к типично хрупкому (разрушение сколом). Ограничение содержания азота до 0,005 мас.% способствует повышению пластичности и ударной вязкости стали.
В таблице 1 приведен химический состав стали по изобретению (плавки 1-3) и состав известной стали (плавка 4). Стали исследовались на металле лабораторных плавок. Выплавку проводили в 150-кг индукционной печи с разливкой металла на литые заготовки, часть металла подвергалась прокатке на толщину 20 мм.
В таблице 2 приведены механические свойства сталей, полученные после оптимальной термообработки.
Кавитационную стойкость определяли по результатам испытаний на магнитострикционной установке при амплитуде колебаний никелевого вибратора 70 мк и частоте колебаний 4000 Гц по потере, массы через каждый час, а также с чередованием коррозионного и кавитационного воздействия (таблица 3).
Из представленных данных следует, что сталь по изобретению имеет значительное преимущество по уровню прочности, пластичности и ударной вязкости по сравнению с известной сталью.
Экспресс-испытания на коррозионную стойкость в условиях воздействия раствора хлорида натрия при повышенных температурах также показали преимущество стали по изобретению.
Использование предложенной стали в качестве высокопрочного коррозионно-стойкого материала для рабочих колес гидротурбин и насосов позволит повысить эксплуатационную стойкость рабочих колес и увеличить межремонтный срок.
название | год | авторы | номер документа |
---|---|---|---|
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ | 2011 |
|
RU2454478C1 |
ЖАРОСТОЙКАЯ СТАЛЬ | 2009 |
|
RU2415963C2 |
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ | 2018 |
|
RU2683173C1 |
Отливка из высокопрочной износостойкой стали и способы термической обработки отливки из высокопрочной износостойкой стали | 2020 |
|
RU2753397C1 |
СТАЛЬ | 1992 |
|
RU2009263C1 |
Хладостойкая высокопрочная сталь | 2020 |
|
RU2746598C1 |
АУСТЕНИТНО-ФЕРРИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ | 2019 |
|
RU2700440C1 |
ТЕПЛОСТОЙКАЯ СТАЛЬ | 2011 |
|
RU2441092C1 |
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ ЛИТЕЙНАЯ СТАЛЬ И СПОСОБ ЕЕ ТЕРМИЧЕСКОЙ ОБРАБОТКИ | 2010 |
|
RU2447185C1 |
ИЗНОСОСТОЙКАЯ МЕТАСТАБИЛЬНАЯ АУСТЕНИТНАЯ СТАЛЬ | 2019 |
|
RU2710760C1 |
Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, используемым для изготовления рабочих колес гидротурбин и насосов, работающих в условиях циклических знакопеременных нагрузок, кавитационной эрозии и интенсивного коррозионного воздействия в пресной воде. Сталь содержит, мас.%: углерод 0,01-0,06, кремний 0,10-0,40, марганец 0,20-0,80, хром 12,50-14,00, никель 3,00-4,50, медь 0,70-1,20, молибден 0,20-0,40, сера 0,001-0,01, фосфор 0,001-0,015, церий 0,005-0,025, кальций 0,005-0,02, алюминий 0,005-0,02, азот <0,005, водород ≤0,00025, железо остальное. Сталь обладает высокой пластичностью, повышенной ударной вязкостью при отрицательных температурах и высокой кавитационной стойкостью. 1 з.п. ф-лы, 3 табл.
1. Высокопрочная коррозионно-стойкая сталь, содержащая углерод, кремний, марганец, хром, никель, медь, молибден, серу, фосфор и железо, отличающаяся тем, что дополнительно содержит церий, кальций, алюминий, азот и водород при следующем соотношении компонентов, мас.%:
2. Сталь по п.1, отличающаяся тем, что суммарное содержание церия, кальция и алюминия составляет 0,02-0,06 мас.%.
Устройство для получения пилообразных колебаний | 1945 |
|
SU72697A1 |
Способ получения фосфатного удобрения | 1940 |
|
SU61285A1 |
ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ | 2004 |
|
RU2271402C1 |
Радиомаячное зональное устройство | 1939 |
|
SU59060A1 |
Резцовая головка для обработки дерева | 1930 |
|
SU20793A1 |
Способ приготовления сернистого красителя защитного цвета | 1915 |
|
SU63A1 |
Авторы
Даты
2013-09-20—Публикация
2012-07-12—Подача