СПОСОБ НАУГЛЕРОЖИВАНИЯ ЧУГУНА С ИСПОЛЬЗОВАНИЕМ НАНОСТРУКТУРИРОВАННОГО НАУГЛЕРОЖИВАТЕЛЯ Российский патент 2013 года по МПК C21C1/08 C21C5/52 B82B3/00 

Описание патента на изобретение RU2494152C2

Изобретение относится к металлургии и литейному производству, в частности к способам получения чугуна с высоким содержанием углерода в электродуговых, индукционных печах и газовых вагранках с копильником.

Существуют различные способы науглероживания сплавов.

Известен, например, способ науглероживания чугуна (патент RU 2191832 с21с 1/08), с целью максимального контакта жидкого металла с частичками карбюризатора.

Наиболее близким к заявляемому техническому решению по размерности науглероживающего компонента является «Способ получения сплава со свободным и связанным углеродом», патент RU 2196187. Данный способ включает выплавку низкоуглеродистого полупродукта, перегрев его выше температуры ликвидус на 20-70°, выпуск расплава, науглероживание сажей с размером частиц 105-107 см, вводимой в расплав в количестве 0,01-2,14%, при выпуске, и/или доводке, и/или разливке, раскисление элементами, доводку, кристаллизацию и обработку сплава давлением, а охлаждение расплава ведут в процессе разливки и кристаллизации до 1147°С со скоростью более 10 град в мин.

Недостатками известного способа являются сложность технологического процесса и высокие затраты на исполнение. Проблемным является ввод в расплав дисперсной, легко возгоняемой горячими воздушными потоками сажи, фракцией 10-5-10-7 см. Трудоемкость ввода сажи в расплав не обеспечивает стабильности всего технологического процесса науглероживания сплава.

Заявляемое изобретение направлено на создание устойчивого способа науглероживания железоуглеродистых сплавов наноструктурированными науглероживателями, на повышение физико-механических свойств сплавов.

Для решения поставленной задачи в способе науглероживания чугуна с использованием наноструктурированного науглероживателя, включающем выплавку исходного чугуна, инжекционный ввод науглероживателя и выпуск расплава, при выплавке исходного расплава чугуна в электродуговых, индукционных печах им в газовых вагранках с копильником осуществляют перегрев расплава при температуре выше температуры ликвидуса на 10…400°С и используют науглероживатель с расположенными на его поверхности наноструктурированными частицами графита с размером 0,00001…0,01 мкм и в количестве 0,0001-0,01%, обеспечивающем образование заданной концентрации центров зарождения графитной фазы.

Способ науглероживания железоуглеродистых сплавов основан на применении наноструктурированного науглероживателя и состоит из следующих операций.

1. Выплавка исходного расплава в электродуговых, индукционных печах и в газовых вагранках с копильником.

2. Перегрев при температуре выше температуры ликвидуса на 10…400°С.

3. Инжекционный ввод наноструктурированного науглероживателя с расположенными на его поверхности наноструктурированными частицами графита с размером 0,00001…0,01 мкм и в количестве 0,0001-0,01%.

4. Последующий выпуск металла.

После данных операций следует перелив в печь выдержки, доводка по температуре и химическому составу, выпуск металла в разливочный ковш и заливка металла в литейные формы.

Перегрев сплава ниже 10°С над линией ликвидус не позволяет обеспечивать при вводе науглероживателя гомогенность жидкого состояния расплава, что снижает эффективность науглероживания.

Перегрев сплава выше 400°С над линией ликвидус повышает угар науглероживателя и снижает эффективность процесса.

Введение в железоуглеродистый сплав наноструктурированных частиц в количестве 0,0001-0,01 % обеспечивает стабильное усвоение углерода.

Введение наноструктурированных частиц науглероживателя в количестве, меньшем, чем 0,0001% не обеспечивает возможность образования требуемого количества центров зарождения графитной фазы, тем самым эффект науглероживания железоуглеродистого сплава является недостаточным.

Введение наноструктурированных частиц науглероживателя в количестве, большем, чем 0,01% вызывает избыточную концентрацию графитной фазы в железоуглеродистом сплаве, что отрицательно влияет на технологические свойства (жидкотекучесть), физико-механические свойства (твердость, предел прочности при растяжении).

Наночастицы с размером до 0,00001 мкм не оказывают значительного усиления графитизирующего эффекта в чугунах и наблюдается образование недостаточного количества центров зарождения графитной фазы. Наночастицы размером более 0,01 мкм выходят за границы наночастиц и свыше этого размера графитизирующий эффект снижается и не происходит увеличения образования центров зарождения графитной фазы.

Механизм действия наноструктурированного науглероживателя заключается в том, что при попадании частицы науглероживателя в расплав чугуна наноструктурированные элементы под действием термических напряжений отделяются от поверхности науглероживателя, и формируют зародыш графитного включения в жидком металле. При этом имеет место существование кластерного механизма зарождения и роста мелких кристаллов графита из расплава. Основа этого механизма заключается в бикластерных реакциях при кристаллизации:

  α n + α n   2 α n   α n +2 α n   3 α n   α n +3 α n   4 α n          α n +i α n  (i+1) α n

где

αn - кластер в составе жидкой фазы;

n - элементарный кристалл, полученный при срастании двух кластеров;

n - кристалл срастания;

i - количество кластеров.

Механизм роста кристаллов за счет присоединения мелких кристаллов к более крупным кристаллам характерен для условий медленного роста при наличии малого переохлаждения и твердожидкой зоны в отливках, что наиболее характерно для сплавов, кристаллизующихся в условиях массового зарождения центров кристаллизации, именно конкурентный механизм роста отвечает за их срастание и укрупнение первичной кристаллической структуры отливок.

Сбалансированное количество наноструктурированных частиц приводит к формированию равномерной структуры железоуглеродистого сплава (графитная фаза + металлическая матрица), что обеспечивает условия достижения высоких физико-механических свойств в чугуне.

Предлагаемый способ науглероживания обеспечивает высокую степень усвоения углерода в сплаве в широком диапазоне температур (1350-1650°С) и позволяет устойчиво достигать длительность эффекта науглероживания (свыше двух часов).

При этом процессе отсутствует пироэффект и возгонка мелкодисперсных частиц науглероживателя над зеркалом металла, что улучшает экологические условия науглероживания железоуглеродистого сплава.

Предлагаемый способ науглероживания чугуна с использованием наноструктурированного науглероживателя подвергался сравнительным испытаниям с известным способом (патент RU 2196187) на основе исходных расплавов приготовленных в электродуговой, индукционной печах, а также в газовой вагранке с копильником.

Результаты сравнительных испытаний приведены в таблице 1.

Приведенные результаты сравнительных испытаний показывают, что заявляемый способ науглероживания позволяет более эффективно проводить технологическое повышение содержания углерода, увеличивать время сохранения эффекта науглероживания, что особенно важно при производстве высококачественных отливок без дополнительных операций - обработке сплава давлением, принудительному охлаждению (чтобы обеспечить повышенную скорость кристаллизации), а также предлагаемый способ обеспечивает экологическую применимость процесса без пыли и графитовой взвеси в воздухе рабочей зоны.

Заявляемый способ науглероживания чугуна с использованием наноструктурированного науглероживателя

- обеспечивает получение чугуна с высокими физико-механическими свойствами (предел прочности при растяжении, относительное удлиннение) за счет высокой степени науглероживания;

- является устойчивым благодаря длительному эффекту сохранения степени науглероживания и отсутствием пироэффекта;

- не предполагает дополнительной обработки давлением, поскольку не требуется регламентации управления скоростью охлаждения и последующей кристаллизации железоуглеродистого сплава;

- улучшает экологические условия процесса науглероживания.

Похожие патенты RU2494152C2

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНЫХ ЧУГУНОВ С ШАРОВИДНЫМ ИЛИ ВЕРМИКУЛЯРНЫМ ГРАФИТОМ НА ОСНОВЕ НАНОСТРУКТУРИРОВАННОГО НАУГЛЕРОЖИВАТЕЛЯ 2011
  • Панфилов Эдуард Владимирович
  • Абрамов Владимир Иванович
  • Гумеров Ирек Флорович
  • Королев Сергей Павлович
RU2495133C2
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННОГО НАУГЛЕРОЖИВАТЕЛЯ ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ ВЫСОКОПРОЧНОГО ЧУГУНА С ШАРОВИДНЫМ И ВЕРМИКУЛЯРНЫМ ГРАФИТОМ 2011
  • Панфилов Эдуард Владимирович
  • Абрамов Владимир Иванович
  • Гуртовой Дмитрий Андреевич
  • Королев Сергей Павлович
  • Толокнов Виталий Юрьевич
RU2495134C2
Способ выплавки чугуна в электродуговых печах 2023
  • Болдырев Денис Алексеевич
  • Панков Михаил Михайлович
  • Трофимов Андрей Анатольевич
RU2823715C1
СПОСОБ ПРОИЗВОДСТВА НАНОСТРУКТУРИРОВАННОГО НАУГЛЕРОЖИВАТЕЛЯ ДЛЯ НАУГЛЕРОЖИВАНИЯ ЖЕЛЕЗОУГЛЕРОДИСТЫХ СПЛАВОВ 2011
  • Панфилов Эдуард Владимирович
  • Королев Сергей Павлович
  • Толокнов Виталий Юрьевич
RU2533521C2
Способ выплавки стали в электродуговой печи 2015
  • Дорофеев Генрих Алексеевич
  • Янтовский Павел Рудольфович
  • Смирнов Константин Геннадиевич
RU2610975C2
СПОСОБ ПОЛУЧЕНИЯ СПЛАВА СО СВОБОДНЫМ И СВЯЗАННЫМ УГЛЕРОДОМ 2001
  • Дорофеев Г.А.
RU2196187C1
СПОСОБ ВЫПЛАВКИ КОНСТРУКЦИОННОЙ СТАЛИ ПОНИЖЕННОЙ И РЕГЛАМЕНТИРОВАННОЙ ПРОКАЛИВАЕМОСТИ 2010
  • Кузнецов Анатолий Алексеевич
  • Пекер Аркадий Моисеевич
  • Куприянов Алексей Александрович
  • Никитин Сергей Иванович
  • Лернер Игорь Семёнович
RU2451090C1
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗОУГЛЕРОДИСТЫХ СПЛАВОВ В МЕТАЛЛУРГИЧЕСКИХ АГРЕГАТАХ РАЗЛИЧНОГО ФУНКЦИОНАЛЬНОГО НАЗНАЧЕНИЯ 2018
  • Подольчук Анатолий Дмитриевич
  • Деревянко Игорь Владимирович
RU2688015C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В СТАЛЕПЛАВИЛЬНОМ АГРЕГАТЕ (ВАРИАНТЫ) 2013
  • Адамков Сергей Николаевич
  • Вздыханько Михаил Михайлович
  • Мурат Сергей Гаврилович
  • Дорофеев Генрих Алексеевич
RU2516248C1
СПЛАВ СО СВОБОДНЫМ И СВЯЗАННЫМ УГЛЕРОДОМ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1998
RU2135617C1

Реферат патента 2013 года СПОСОБ НАУГЛЕРОЖИВАНИЯ ЧУГУНА С ИСПОЛЬЗОВАНИЕМ НАНОСТРУКТУРИРОВАННОГО НАУГЛЕРОЖИВАТЕЛЯ

Изобретение относится к металлургии и литейному производству, в частности к получению чугуна с высоким содержанием углерода. Способ включает выплавку исходного расплава чугуна в печи, инжекционный ввод науглероживателя и выпуск расплава металла, при этом выплавку исходного расплава чугуна в электродуговых, индукционных печах или в газовых вагранках с копильником осуществляют перегрев расплава при температуре выше температуры ликвидуса на 10…400°С и используют науглероживатель с расположенными на его поверхности наноструктурированными частицами графита с размером 0,00001…0,01 мкм и в количестве 0,0001-0,01%, обеспечивающем образование заданной концентрации центров зарождения графитной фазы. Изобретение обеспечивает получение железоуглеродистого сплава с высокими физико-механическими свойствами, высокой степенью науглероживания, длительным эффектом сохранения степени науглероживания, отсутствием пироэффекта, а также улучшает экологические условия производства чугуна. 1 табл.

Формула изобретения RU 2 494 152 C2

Способ науглероживания чугуна с использованием наноструктурированного науглероживателя, включающий выплавку исходного расплава чугуна, инжекционный ввод науглероживателя и выпуск расплава металла, отличающийся тем, что при выплавке исходного расплава чугуна в электродуговых, индукционных печах или в газовых вагранках с копильником осуществляют перегрев расплава при температуре выше температуры ликвидуса на 10-400°С и используют науглероживатель с расположенными на его поверхности наноструктурированными частицами графита с размером 0,00001-0,01 мкм и в количестве 0,0001-0,01%, обеспечивающем образование заданной концентрации центров зарождения графитной фазы.

Документы, цитированные в отчете о поиске Патент 2013 года RU2494152C2

СПОСОБ ПОЛУЧЕНИЯ СПЛАВА СО СВОБОДНЫМ И СВЯЗАННЫМ УГЛЕРОДОМ 2001
  • Дорофеев Г.А.
RU2196187C1
СПОСОБ НАУГЛЕРОЖИВАНИЯ ЧУГУНА 2001
  • Грачев В.А.
  • Кирин Е.М.
  • Горелов Н.А.
  • Черный А.А.
  • Анфинагентов И.Ю.
RU2191832C1
EP 751232 A1, 02.01.1997
Способ окисления боковых цепей ароматических углеводородов и их производных в кислоты и альдегиды 1921
  • Каминский П.И.
SU58A1

RU 2 494 152 C2

Авторы

Панфилов Эдуард Владимирович

Абрамов Владимир Иванович

Гумеров Ирек Флорович

Гуртовой Дмитрий Андреевич

Абдулхаликов Рустем Раисович

Королев Сергей Павлович

Даты

2013-09-27Публикация

2011-10-12Подача