СПОСОБ ВЕЛЬЦЕВАНИЯ ЦИНКОВЫХ КЕКОВ Российский патент 2013 года по МПК C22B19/00 C22B1/02 

Описание патента на изобретение RU2496895C1

Изобретение относится к цветной металлургии и может быть использовано при переработке цинковых кеков вельцеванием.

Наиболее близким по технической сущности к предлагаемому способу является способ вельцевания цинковых кеков, включающий окатывание цинковых кеков перед сушкой с углеродсодержащим материалом вместе с коксовой мелочью, и вельцевание скатанного материала (SU 876761, С22В 19/38, опубл. 30.10.1981 г.).

Недостатки известкового способа заключаются в высоком расходе топлива (более 400 кг/т кека), низкой производительности вельц-печи (0,63 т/м3·сут).

Технический результат изобретения - снижение расхода коксовой мелочи, повышение производительности печи. Поставленная цель достигается тем, что в известном способе вельцевания цинковых кеков, включающим операции смешения, окатывания совместно с твердым углеродсодержащим материалом (коксовой мелочью) на стадию смешения, подается смесь кальций- и магнийсодержащих материалов при содержании оксида магния в смеси 20-50%, соотношении в шихте (СаО+MgO)/SiO2=2÷4. Окатывание смеси совместно с твердым углеродсодержащим материалом крупностью менее 2 мм и вельцевание с добавкой углеродсодержащего материала крупностью +2 мм при температуре 1100°C

Кроме того, в качестве твердого углеродсодержащего материала используют отходы угольной и нефтеперерабатывающей отраслей промышленности.

На рис.1 изображена аппаратурная схема переработки цинковых кеков. Схема включает:

1 - фильтр-пресс;

2, 3, 4, 5 - бункера для цинкового кека, смеси кальций- и магнийсодержащих материалов, углеродсодержащего материала крупностью менее 2 мм, оборотных пылей вельцевания крупностью менее 1 мм;

6 - смеситель-гранулятор;

7 - вельц-печь.

Цинковый кек с влажностью менее 19% поступает с фильтр-пресса 1 в бункер 2. Затем цинковый кек со смесью кальций- и магнийсодержащих материалов (сод. MgO 20-50%) из бункера 3, углеродсодержащим материалом (сод. фракций менее 2 мм - 100%) из бункера 4, оборотными пылями вельц-печи (крупность 100% менее 1 мм) из бункера 5 направляется в гранулятор-смеситель. Перемешанный и гранулированный материал размером гранул 2-5 мм направляется в вельц-печь на вельцевание. Дополнительно в печь для корректировки процесса вельцевания может подаваться твердый углеродсодержащий материал крупностью более 2 мм.

Подача смеси, состоящей из кальций- и магнийсодержащих компонентов, позволяет исключить образование жидких фаз в печи и необходимость использования для их впитывания дорогостоящего кокса, при этом на 30-40% сокращается расход углеродной составляющей шихты, появляется возможность самостоятельного использования отходов угольной и нефтеперерабатывающих промышленностей.

При подаче только одного из компонентов вышеуказанный эффект не достигается:

А) так как получаются легко разрушаемые в печи гранулы, при этом увеличивается выход оборотного материала с последующим снижением производительности вельц-печи;

Б) обеспечивается возможностью получения мелких гранул (2-5 мм), позволяющих повысить скорость отгонки цинка, снизить температуру вельцевания с 1250°C до 1100°C и, следовательно, уменьшить топливную составляющую углеродсодержащего материала.

Использование в качестве добавки в гранулы углеродсодержащего материала крупностью менее 2 мм увеличивает скорость восстановления и последующей отгонки цинка. Для регулирования теплового баланса печи, исключения настылеобразования в печь дополнительно подается твердый углеродсодержащий материал крупностью более 2 мм.

Нижняя граница крупности твердого углеродсодержащего материала и гранул (плюс 2 мм), загружаемых в вельц-печь, рассчитана исходя из физических свойств материала и скорости газового потока в печи.

Снижение температуры вельцевания при переработке цинковых кеков ниже 1100°C не увеличиваеи положительного эффекта.

Соотношение (СаО+MgO)/SiO2=2÷4 в гранулах позволяет максимально снизить образование жидких фаз в гранулах, увеличить скорость возгонки цинка. Снижение соотношения до менее 2 не позволяет полностью исключить расплавление. Увеличение добавки более 4 снижает часовую производительность печи по товарной вельц-окиси.

В качестве твердого углеродсодержащего материала, заменяющего кокс, можно использовать отходы угольной промышленности, например, антрацит с содержанием углерода менее 75%; отходы нефтеперерабатывающей промышленности - нефтекокс (сод. углерода - менее 75%); вторичную коксовую мелочь, получаемую при магнитной сепарации клинкера от вельцевания (сод. углерода 55-60%).

Пример 1.

Влияние добавки смеси кальций- и магнийсодержащих материалов

К цинковому кеку состава, %:

цинк - 20.2, свинец - 1.9, железо - 25.3, оксид кремния - 7.1 добавляли кальцийсодержащий материал - известняк (сод. CaO-56%) и магнийсодержащий материал - отход производства магнезита (сод. MgO-70%). Содержание оксида магния в смеси составляло 35% в количестве, обеспечивающем соотношение (СаО+MgO)/SiO2 равное 1.0, 2.0, 3.0, 4.0 и 5.0; твердый углеродсодержащий материал (нефтекокс) крупностью (-1) мм в количестве 20% с весу кека; оборотные пыли от вельцевания цинковых кеков (фракция - 1 мм). Смесь окатывали на грануляторе-смесителе с получением гранул размером 3 мм.

Гранулы с добавкой 5% (от веса кека) углеродсодержащего материала крупностью 3 мм загружали в лабораторную вельц-печь и перерабатывали при температуре 1100° в течение 2-х часов. Общий расход углеродсодержащего материала составлял 25% от веса цинкового кека.

Для сравнения, проводили опыты по прототипу: без добавки смеси, содержащей кальций и магний, но с добавкой на стадию смешения и окатывания углеродсодержащего материала, не разделенного на фракции плюс и минус - 2 мм в количестве 25% и 40% к весу цинкового кека, а также оборотные пыли от вельцевания цинковых кеков.

Затем материал загружали в печь, где обрабатывали в аналогичных с предлагаемым способом условиях. Результаты опытов приведены в таблицы 1.

Таблица 1 Наименование способа Добавка смеси кальций- и магнийсодержащих материалов до соотношения (CaO+MgO)/SiO2 Производительность печи, т/м3·сут1 Состав клинкера, % Состояние материала в печи цинк углерод Предлагаемый (25% углеродсодержащего материала к весу цинкового кека) 1 0,44 3,1 5,4 Частичное расплавление 2 0,89 0,8 3,9 Сыпучий 3 0,96 0,6 3,5 Сыпучий 4 0,96 0,4 3,1 Сыпучий 5 0,92 1,3 2,9 Сыпучий Известный (25% углеродсодержащего материала к весу цинкового кека) 0 0,21 5,2 6,7 Расплавляется Известный (40% углеродсодержащего материала к весу цинкового кека) 0 0,63 1,2 10,0 Сыпучий 1Производительность печи определяется в тоннах переработанного цинкового кека, отнесенных к 1 м3 рабочего объема печи в сутки.

Как видно из таблицы 1, при добавке к цинковому кеку смеси кальций- и магнийсодержащих материалов производительность печи увеличивается с 0,21 т/м3 в сутки до 0,96 т/м3·сут. Содержание цинка в клинкере снижается до 0.4%, материал в печи не расплавляется, становится сыпучим, вельцуется. Снижение соотношения (CaO+MgO)/SiO2 менее 2 приводит к частичному расплавлению, снижению производительности и повышению содержания цинка в шлаке. Увеличение добавки более 4 не повышает положительный эффект, но при этом из-за необходимости расхода углеродсодержащего материала на нагрев кальций- и магнийсодержащего материала увеличивается содержание цинка в клинкере и падает производительность.

При проведении опыта по прототипу положительный эффект при расходе углеродсодержащего материала 25% к весу цинкового кека не достигается, показатели вельцевания улучшаются при повышении количества углеродсодержащего материала до 40% к весу цинкового кека и замене нефтекокса на металлургический (более дорогой) кокс.

Пример 2.

Влияние содержания оксида магния в смеси, состоящей из кальций- и магнийсодержащих материалов

Опыты проводили в условиях (см. Пример 1) Содержание оксида магния в смеси составляло, %: 10; 20; 30; 50; 60.

Таблица 2 Содержание оксида магния в смеси кальций- и магнийсодержащих материалов Производительность печи, т/м3·сут Количество оборотного материала, % к загрузке гранул 0 0,87 12 10 0,9 8 20 0,94 5 30 0,96 3 50 0,96 3 60 0,88 10

Из приведенных данных в таблице 2 видно, что при использовании только кальцийсодержащего материала увеличивается выход оборотного материала с 3-5% до 12% за счет разрушения в печи гранул. При этом снижается производительность. Аналогичное явление наблюдается и при увеличении содержания в смеси оксида магния более 50%. Оптимальный интервал содержания оксида магния в смеси кальций- и магнийсодержащих материалов - 20-50%.

Пример 3

Влияние подачи на окатывание твердого углеродсодержащего материала крупностью менее 2 мм.

Опыты проводили в условиях (см. Пример 1).

На окатывание подавали углеродсодержащий материал крупностью 0,5 мм; 1 мм; 2 мм; 3 мм; 4 мм.

Таблица 3 Наименование способа Размер углеродсодержащего материала, подаваемого на окатывание, мм Производительность печи, т/м3·сут. Содержание углерода в клинкере, % Предлагаемый 0,5 0,98 3,3 1 0,97 3,3 2 0,96 3,5 Известный 3 0,82 12 4 0,75 15

Из приведенных в таблице 3 данных видно, что увеличение крупности подаваемого на окатывание углеродсодержащего материала снижает производительность печи с (0,96-0,98) т/м3·сут до (0,75-0,82) т/м3·сут вследствие снижения скорости отгонки цинка. При этом снижается степень использования углерода в гранулах, а содержание углерода в клинкере увеличивается до 12-15%.

Пример 4

Влияние на вельцевание добавки - углеродсодержащего материала крупностью более 2 мм.

Опыты проводили в условиях (см. Пример 1).

В печь на вельцевание дополнительно подавали твердый углеродсодержащий материал крупностью 2 мм, 3 мм, 4 мм.

Таблица 4 Наименование способа Крупность подаваемого в печь углеродсодержащего материала, мм Расход твердого углеродсодержащего материала (к весу кека, %) Образование на стенках печи настылей Предлагаемый 2 мм 25 Не образуется Известный 3 мм 40 Образуется настыль толщиной 100 мм 4 мм 40 Образуется настыль толщиной 170 мм

Из приведенных в таблице 4 данных видно, что увеличение крупности подаваемого на вельцевание твердого углеродсодержащего материала с 2 мм до 3-4 мм снижает степень поглощения указанным материалом жидких фаз и, при этом, образуется в печи настыль.

Для поглощения жидких фаз необходимо увеличить расход твердого углеродсодержащего материала с 25% до 40% к весу кека.

Пример 5 Влияние температуры вельцевания.

Опыты проводили в условиях (см. Пример 1). Процесс вельцевания вели при температурах 1000°C; 1100°C; 1200°C.

Таблица 5 Наименование способа Температура вельц-процесса, °C Расход твердого восстановителя, к весу кека, % Производительность вельц-печи, т/м3·сут Предлагаемый 1000 25 0,9 1100 25 0,96 Известный 1200 40 0,86

Увеличение температуры вельцевания увеличивает топливную составляющую углеродсодержащего материала, увеличивая его расход с 25% до 40% к весу кека. При этом имеет место снижение производительности печи с 0,96 до 0,86 т/м3·сут.

Снижение температуры вельцевания без снижения расхода твердого содержащего материала снижает производительность печи с 0,96 до 0,9 т/м3·сут.

Таким образом, проведенные опыты показала, что в предлагаемом способе добавка кальций и магнийсодержащего материала к цинковому кеку должна обеспечивать соотношение (CaO+Mgo)/SiO2=2÷4.

При содержании в смеси оксида магния 20-50% на стадию окатывания следует подавать углеродсодержащий материал крупностью менее 2 мм, в качестве добавки к полученным гранулам при вельцевании использовать углеродсодержащий материал крупностью более 2 мм. Процесс вельцевания скатанного материала вести при температуре 1100°С. Использование предлагаемого способа по сравнению с известным способом вельцевания цинковых кеков позволяет:

- повысить производительность печи с 0,63 до 0,96 т/м3·сут;

- снизить расход углеродсодержащего материала с 400 до 250 кг/т кека;

- использовать в качестве углеродсодержащего материала отходы угольной и нефтеперерабатывающей отраслей промышленности.

Похожие патенты RU2496895C1

название год авторы номер документа
Способ пирометаллургической переработки цинковых кеков 1980
  • Колесников Александр Васильевич
  • Сычев Анатолий Петрович
  • Ушаков Николай Николаевич
  • Куленов Ахат Салемхатович
  • Сапрыгин Анатолий Федорович
  • Козлов Павел Александрович
  • Батюков Михаил Иванович
  • Зинде Юрий Николаевич
SU876761A1
СПОСОБ ПЕРЕРАБОТКИ ЦИНКСОДЕРЖАЩИХ МЕТАЛЛУРГИЧЕСКИХ ОТХОДОВ 2012
  • Козлов Павел Александрович
  • Паньшин Андрей Михайлович
  • Леонтьев Леопольд Игоревич
  • Затонский Александр Валентинович
  • Дюбанов Валерий Григорьевич
  • Решетников Юрий Васильевич
RU2507280C1
ШИХТА ДЛЯ ВЕЛЬЦЕВАНИЯ 1997
  • Казанбаев Л.А.
  • Козлов П.А.
  • Колесников А.В.
  • Решетников Ю.В.
  • Гизатулин О.В.
RU2122595C1
Способ переработки окисленного цинксвинецсодержащего сырья 2023
  • Козлов Павел Александрович
  • Паньшин Андрей Михайлович
  • Якорнов Сергей Александрович
  • Беляков Олег Васильевич
  • Ивакин Дмитрий Анатольевич
RU2802932C1
СПОСОБ ПЕРЕРАБОТКИ ЖЕЛЕЗОЦИНКСОДЕРЖАЩИХ МАТЕРИАЛОВ 2006
  • Мизин Владимир Григорьевич
  • Сперкач Иван Емельянович
  • Самсиков Евгений Анатольевич
  • Козлов Павел Александрович
  • Колесников Александр Васильевич
  • Кононов Александр Иванович
RU2329312C2
СПОСОБ ПИРОМЕТАЛЛУРГИЧЕСКОЙ ПЕРЕРАБОТКИ ЦИНКСОДЕРЖАЩИХ МАТЕРИАЛОВ 2003
  • Шашмурин П.И.
  • Посохов М.Ю.
  • Степин М.Б.
  • Демин А.П.
  • Стуков М.И.
  • Загайнов В.С.
RU2244034C1
СПОСОБ ПЕРЕРАБОТКИ ЦИНКСОДЕРЖАЩИХ МАТЕРИАЛОВ 2001
  • Казанбаев Л.А.
  • Козлов П.А.
  • Колесников А.В.
  • Гизатулин О.В.
RU2197549C1
СПОСОБ ВЕЛЬЦЕВАНИЯ ЦИНКСОДЕРЖАЩИХ МАТЕРИАЛОВ 1989
  • Салихов Зуфар Гарифуллинович
RU2005800C1
ШИХТА ДЛЯ ВЕЛЬЦЕВАНИЯ ЦИНКСВИНЕЦОЛОВОСОДЕРЖАЩИХ МАТЕРИАЛОВ 2012
  • Козлов Павел Александрович
  • Паньшин Андрей Михайлович
  • Затонский Александр Валентинович
  • Леонтьев Леопольд Игоревич
  • Решетников Юрий Васильевич
  • Дюбанов Валерий Григорьевич
  • Дегтярев Александр Михайлович
  • Ивакин Дмитрий Анатольевич
RU2509815C1
СПОСОБ ВЕЛЬЦЕВАНИЯ ЦИНКИНДИЙСОДЕРЖАЩИХ МАТЕРИАЛОВ 2000
  • Гейхман В.В.
  • Казанбаев Л.А.
  • Козлов П.А.
  • Колесников А.В.
  • Решетников Ю.В.
  • Гизатулин О.В.
  • Ивакин Д.А.
RU2172355C1

Реферат патента 2013 года СПОСОБ ВЕЛЬЦЕВАНИЯ ЦИНКОВЫХ КЕКОВ

Изобретение относится к металлургии цветных металлов и может быть использовано при переработке цинковых кеков вельцеванием. Способ вельцевания цинковых кеков включает смешение и скатывание цинковых кеков совместно с твердым углеродсодержащим материалом и вельцевание окатанного материала. При этом на стадию смешения подают смесь кальций- и магнийсодержащих материалов при содержании оксида магния в смеси 20-50% и соотношении в шихте (CaO+MgO)/SiO2=2÷4. Окатывание смеси ведут совместно с твердым углеродсодержащим материалом крупностью менее 2 мм. Вельцевание окатанного материала ведут с добавкой углеродсодержащсго материала крупностью более 2 мм при температуре 1100°C. В качестве углеродсодержащего материала используют отходы угольной и нефтеперерабатывающей отраслей промышленности. Техническим результатом является повышение производительность печи до 0,96 т/м3·сутки и снижение расхода углеродсодержащего материала до 250 кг/т кека. 1 з.п. ф-лы, 5 табл., 1 ил., 5 пр.

Формула изобретения RU 2 496 895 C1

1. Способ вальцевания цинковых кеков, включающий смешение, окатывание цинковых кеков совместно с твердым углеродсодержащим материалом и вельцевание окатанного материала, отличающийся тем, что на стадию смешения подают смесь кальций- и магнийсодержащих материалов при содержании оксида магния в смеси 20-50% и соотношении в шихте (CaO+MgO)/SiO2=2÷4, окатывание смеси ведут совместно с твердым углеродсодержащим материалом крупностью менее 2 мм и вельцевание окатанного материала ведут с добавкой углеродсодержащего материала крупностью более 2 мм при температуре 1100°C.

2. Способ по п.1, отличающийся тем, что в качестве углеродсодержащего материала используют отходы угольной и нефтеперерабатывающей отраслей промышленности.

Документы, цитированные в отчете о поиске Патент 2013 года RU2496895C1

Способ пирометаллургической переработки цинковых кеков 1980
  • Колесников Александр Васильевич
  • Сычев Анатолий Петрович
  • Ушаков Николай Николаевич
  • Куленов Ахат Салемхатович
  • Сапрыгин Анатолий Федорович
  • Козлов Павел Александрович
  • Батюков Михаил Иванович
  • Зинде Юрий Николаевич
SU876761A1
ШИХТА ДЛЯ ВЕЛЬЦЕВАНИЯ ЦИНКСОДЕРЖАЩИХ МАТЕРИАЛОВ 2005
  • Казанбаев Леонид Александрович
  • Козлов Павел Александрович
  • Колесников Александр Васильевич
  • Ивакин Дмитрий Анатольевич
  • Гизатулин Олег Вильявич
RU2284361C1
СПОСОБ ПИРОМЕТАЛЛУРГИЧЕСКОЙ ПЕРЕРАБОТКИ ЦИНКОВЫХ КЕКОВ 2005
  • Казанбаев Леонид Александрович
  • Козлов Павел Александрович
  • Колесников Александр Васильевич
  • Болдырев Виталий Васильевич
  • Гизатулин Олег Вильевич
  • Ивакин Дмитрий Анатольевич
RU2279492C1
CN 101775503 A, 14.07.2010
JP 2009144213 A, 02.07.2009
JP 2009127064 A, 11.06.2009
ХИРУРГИЧЕСКИЙ ШОВНЫЙ МАТЕРИАЛ Н. Н. КУЗНЕЦОВА 0
SU198547A1

RU 2 496 895 C1

Авторы

Козлов Павел Александрович

Паньшин Андрей Михайлович

Затонский Александр Валентинович

Решетников Юрий Васильевич

Дегтярев Александр Михайлович

Ивакин Дмитрий Анатольевич

Даты

2013-10-27Публикация

2012-03-22Подача