СПОСОБ МНОГОСИГНАЛЬНОЙ ПЕЛЕНГАЦИИ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ НА ОДНОЙ ЧАСТОТЕ ДЛЯ КРУГОВОЙ АНТЕННОЙ СИСТЕМЫ Российский патент 2013 года по МПК G01S5/04 

Описание патента на изобретение RU2497141C1

Изобретение относится к радиотехнике, в частности к радиопеленгации. Многосигнальная пеленгация источников радиоизлучения (ИРИ) имеет место в процессе мониторинга радиоэлектронной обстановки при многолучевом распространении радиоволн, воздействии преднамеренных и непреднамеренных помех, отражениях сигнала от различных объектов и слоев атмосферы.

Задача радиопеленгации является некорректной. Большинство методов многосигнальной пеленгации на одной частоте, описанных в литературе, опираются на статистические методы проверки гипотез, на метод максимума правдоподобия, сверхразрешающие методы (например, MUSIC) и др. Однако задача пеленгации ИРИ как некорректная задача не может быть решена надежно ни статистическими методами, достоверность результата которых определяется точностью полученных оценок параметров сигналов; ни методом наименьших квадратов (МНК) в силу нелинейности и плохой обусловленности решаемой системы уравнений; ни сверхразрешающими методами, которые дают приемлемые результаты лишь при высоких соотношениях сигнал/шум и не обеспечивает разрешение ИРИ, имеющих близкие по значениям пеленги.

Все способы пеленгации имеют много общего: радиосигналы источников принимают посредством антенной системы (АС), получают комплексные амплитуды сигналов на выходах элементов антенн (вектор амплитудно-фазового распределения (АФР)) и по этим данным определяют значения параметров сигналов. Отличие состоит в том, по каким алгоритмам обрабатывают зарегистрированные антенной системой сигналы.

Известны способы пеленгации с повышенной разрешающей способностью [1, 2].

В патенте [2] задача решается с помощью lP-регуляризации. Этот способ требует достаточно много времени для обработки сигнала, что не позволяет его применить в оперативной обстановке, и квалифицированных операторов, т.к. в методе необходимо для каждого измерения задавать значения параметра регуляризации и показатель степени регуляризирующего (функционала. Однозначных подходов для их выбора не существует.

Поэтому в качестве прототипа принят способ, описанный в патенте [1]: Способ многосигнальной пеленгации источников радиоизлучения на одной частоте включает в себя прием многолучевого сигнала посредством многоэлементной АС, синхронное преобразование ансамбля принятых сигналов, зависящих от времени и номера элемента ЛС, в цифровые сигналы, преобразование цифровых сигналов в сигнал-вектор АФР y(u,θ,β), описывающий распределение амплитуд и фаз на элементах АС.

Способ-прототип обладает следующими недостатками:

- предназначен для линейных, а не круговых АС;

- для круговой АС не удается свести задачу к системе алгебраических уравнений, в которых неизвестные переменные имеют целочисленные показатели степени;

- нельзя исключить неизвестные амплитуды сигналов на первом этапе решения задачи, тем самым раздельно определить амплитуды сигналов и пеленги излучателей;

- не всегда требуется дополнительная операция для раздельного определения азимутальных θ и угломестных β пеленгов.

Указанные недостатки не позволяют применять прототип в реальных условиях для которых АС, которые более компактны и распространены, чем линейные АС.

Предлагаемый способ свободен от указанных недостатков и является параметрическим методом многосигнального пеленгования на одной частоте. Сигналы рассматриваются как детерминированные, подверженные аддитивной помехе, оценки параметров которых подлежат определению. В качестве АС рассматривается круговая АС, состоящая из нескольких слабонаправленных элементов (вибраторов). В качестве фазового центра (точки, относительно которой происходит измерение фаз сигналов, приходящих на элементы антенной системы) выбирается один из вибраторов.

Ставят задачу определения следующих параметров присутствующих в эфире ИРИ:

- амплитуды (мощности) излучаемых сигналов;

- азимутальных и угломестных пеленгов ИРИ,

- исключения дополнительной операции для раздельного определения азимутальных θ и угломестных β пеленгов,

- для повышения быстродействия выполнения последовательности простых математических операций, не требующих больших вычислительных затрат.

Задача изобретения - свести обработку реальных сигналов ИРИ к простейшим формулам, чтобы минимизировать время вычислительной обработки для определения пеленга.

В изобретении задача решается следующим образом: способ многосигнальной пеленгации источников радиоизлучения (ИРИ) на одной частоте включает в себя прием многолучевого сигнала посредством многоэлементной АС, синхронное преобразование ансамбля принятых сигналов, зависящих от времени и номера элемента АС, в цифровые сигналы, преобразование цифровых сигналов в сигнал-вектор амплитудно-фазового распределения (АФР) у(u,θ,β), описывающий распределение на элементах АС амплитуд u и фаз, определяющих θ и β - азимутальный и угломестный пеленги ИРИ соответственно. При этом получение пеленгов осуществляют в круговой АС посредством предварительного введения в вычислитель сформированной для конкретной предварительно образмеренной круговой АС (и с заданными значениями вектора в азимутальных пеленгов в заданном диапазоне) системы уравнений для m-го элемента АС:

y m ( u , θ , β ) = i = 1 K l = 1 N ( u i exp ( j α i ) ξ i cos γ m + t g θ i l sin γ m ) ; m∈[1,M]

где ξi=exp(j(2πR/λ)cosθicosβi);

uiexp(jαi) - комплексная амплитуда сигнала i-го ИРИ;

R - радиус АС;

λ - длина волны сигнала, излучаемого ИРИ;

αi - начальная фаза i-го сигнала;

γm - угол между линией, проведенной через центр АС и ее m-й элемент АС, и линией отсчета азимутальных пеленгов;

М - количество элементов (вибраторов) круговой АС;

К - количество различных сигналов ИРИ (или количество ИРИ);

N - количество заданных дискрет азимутального пеленга;

далее на выходе решения указанной системы уравнений получают значения параметров амплитуд uiexp(jαi) и значений ξi, которые вместе с заданными значениями θi поступают на вход блока вычисления угломестных пеленгов βi через санкцию арккосинус из условия: ξi=ехр(j(2πR/λ)cosθicosβi).

Предлагаемый способ осуществляют следующим образом посредством операций:

1. Задается диапазон только азимутальных пеленгов θ, в котором могут находиться излучаемые сигналы, например, от 0 до 360 градусов. Вектор этих значений или система таких векторов являются одной из характеристик круговой АС и формируется до проведения измерений.

2. Формируется система алгебраических уравнений размерностью М на N, М - число элементов AC, N - число дискрет азимутальных пеленгов в выбранном диапазоне (обычно этот диапазон равен 360°, тогда в простейшем случае при постоянном шаге Δθ изменения азимутального пеленга θ количество дискрет N=360/Δθ). Уравнения АС имеют следующий вид:

y m ( u , θ , β ) = i = 1 K l = 1 N ( u i exp ( j α i ) ξ i cos γ m + t g θ i l sin γ m ) ; m [ 1, M ] ( 1 )

Эта система уравнений также является одной из характеристик круговой АС и формируется до проведения измерений.

3. Физические радиосигналы от К ИРИ принимают в реальном времени посредством круговой АС, содержащей М элементов (вибраторов).

4. Получают комплексные амплитуды сигналов на выходах антенн (вектор АФР). m-й элемент вектора АФР имеет вид

y m = i = 1 K u i exp { j ϕ m ( θ i , β i ) } + n m ( 2 )

где К - количество ИРИ, ui - амплитуда сигнала i-го ИРИ, φmii) - фаза сигнала i-го ИРИ на m-м элементе АС (вибраторе), зависящая от азимутального и угломестного пеленгов i-го ИРИ θi и βi соответственно, nm - шум, имеющий место на m-м элементе (вибраторе), включающий в себя шум мирового фона и аппаратуры.

5. Комплексные амплитуды сигналов на выходах антенн (вектор АФР) поступают в вычислитель через M-канальный аналого-цифровой преобразователь (АЦП), далее блок восстановления АФР, то есть получение дискретных комплексных значений огибающих сигналов.

Процедуру определения параметров в блоке идентификации параметров осуществляют на основе синхронного измерения выходов элементов М-элементной круговой АС в моменты времени t (примечание: увеличить число уравнений в системе (1) для повышения точности решения можно путем учета значений вектора АФР, полученного в различные моменты времени).

Выход ym m-го элемента круговой АС имеет вид

y m ( u , θ , β ) = i = 1 K u i exp ( j ( 2 π R / λ ) cos ( θ i γ m ) cos β i + α i ) ( 3 )

где u - вектор амплитуд (мощностей) сигналов, излучаемых ИРИ;

θ, β - векторы азимутальных и угломестных пеленгов ИРИ соответственно;

R - радиус АС;

λ - длина волны сигнала, излучаемого ИРИ;

αi - начальная фаза i-го сигнала (i-го ИРИ);

γm - угол между линией, проведенной через центр АС и ее m-й элемент, и линией отсчета азимутальных пеленгов.

Применим к (3) простейшие преобразования

y m ( u , θ , β ) = i = 1 K y i exp ( j α i ) exp ( j ( 2 π R / λ ) cos ( θ i γ m ) cos β i ) .

Обозначим ξ i = exp ( j ( 2 π R / λ ) cos ( θ i ) cos β i ) . ( 4 )

Тогда ((2πR/λ)cos(θim)cosβi)/((2πR/λ)cos(θi)cosβi)=cosγm+tgθisinγm.

Отсюда ((2πR/λ)cos(θim)cosβi)=((2πR/λ)cos(θi)cosβi)(cosγm+tgθisinγm)

или

exp ( j ( 2 π R / λ ) cos ( θ i γ m ) cos β i ) = ( exp ( j ( 2 π R / λ ) cos ( θ i ) cos β i ) ) cos γ m + t g θ i sin γ m = ξ i cos γ m + t g θ i sin γ m , т . е .

y m ( u , θ , β ) = i = 1 K ( u i exp ( j α i ) = i = 1 K u i exp ( j α i ) ξ i cos γ m + t g θ i sin γ m ; m [ 1, M ] , ( 5 )

Ai=uiexp(jαi) - комплексная амплитуда i-го сигнала.

Получили систему алгебраических уравнений (5). Для ее решения в вычислителе сформирована сетка по θ ( θ π 2 ± n π ) для каждого поступающего сигнала, например, θ∈[0,360], Δθ=1 (тогда N=360/1=360). Получаем систему, в которой для каждого i-го сигнала задается набор значений θil:

y m ( u , θ , β ) = i = 1 K l = 1 N ( u i exp ( j α i ) ξ i cos γ m + t g θ i l sin γ m ) ; m [ 1, M ] . ( 6 )

6. Введенное преобразование (4) позволяет разделить определение параметров сигналов на два шага, что обеспечивает получение более устойчивого к помехам решения. Процесс решения состоит из двух шагов: сначала из системы (6) найдем оценки комплексной амплитуды uiexp(jαi), θi и ξi. Зная ξi и θi, по определению (4) найдем угломестный пеленг βi посредством тригонометрической функции арккосинус.

7. В вычислитель поступает предварительно ранее сформированная система уравнений (6) при заданных значениях азимута θil и вектор АФР. На выходе вычислителя получают комплексную амплитуду uiexp(jαi), значения θi и ξi. Значения θi и ξi подают в блок вычисления угломестного пеленга βi согласно определению (4).

8. Дисперсии полученных оценок определяют как дисперсии функции случайного аргумента. На основе полученных дисперсий строят соответствующие доверительные интервалы [3].

Операции способа поясняются Фиг.1 - структурной схемой устройства пеленгации.

Изложенный способ обладает высоким быстродействием, т.к. не содержит в себе операции, требующих больших вычислительных затрат.

Пример

Задана круговая АС с двумя элементами (вибраторами), отстоящими друг от друга на угол 30 градусов, то есть γi=0; γ 2 = π 6 .

Запишем для двух сигналов 1-е и 2-е уравнения из системы (6). В примере отразим тот факт, что для каждого сигнала ряды значений азимутального пеленга θ могут быть различными (например, на весь интервал 360 градусов дискретность изменения азимутального пеленга может быть различной - от долей до нескольких градусов):

y 1 ( u , θ , β ) = u 1 exp ( j α 1 ) ξ 1 cos 0 + t g θ 11 sin 0 + + u 1 exp ( j α 1 ) ξ 1 cos 0 + t g θ 1,360 sin 0 + + u 2 exp ( j α 2 ) ξ 2 cos 0 + t g θ 2,1 sin 0 + + u 2 exp ( j α 2 ) ξ 2 cos 0 + t g θ 2,360 sin 0

y 2 ( u , θ , β ) = u 1 exp ( j α 1 ) ξ 1 cos π 6 + t g θ 11 sin π 6 + + u 1 exp ( j α 1 ) ξ 1 cos π 6 + t g θ 1,360 sin π 6 + + u 2 exp ( j α 2 ) ξ 2 cos π 6 + t g θ 2,1 sin π 6 + + u 2 exp ( j α 2 ) ξ 2 cos π 6 + t g θ 2,360 sin π 6

При заданных значениях y1(u,θ,β),…, y2(u,θ,β) и θ, решая приведенную систему уравнений, находим оценки искомых параметров. Заметим, что для конкретной круговой АС система уравнений (6) (исключая столбец y1(u,θ,β),…, y2(u,θ,β) будет составлена заранее.

Для нового измерения (наблюдения) той же АС достаточно ввести новый столбец измеренных значений y1(u,θ,β),…, y2(u,θ,β). И далее в процессе работы системы в вычислитель вводят только конкретный результат измерений для всех элементов (вибраторов) круговой AC - только левую часть уравнений (6), то есть значения y1(u,θ,β),…, y2(u,θ,β) и θ.

Таким образом, для получения пеленгов достаточно выполнения последовательности простых математических операций, не требующих больших вычислительных затрат.

Источники информации

1. Грешилов А.А. Патент RU 2380719, МПК G01S 5/04, опубл. 27.01.2010.

2. Грешилов А.А., Плохута П.А. Патент RU 2382379, МПК G01S 5/04, опубл. 20.02.2010.

3. Грешилов А.А. Математические методы принятия решений: Учебное пособие для вузов. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. - 584 с.

Похожие патенты RU2497141C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ НАИБОЛЕЕ ВЕРОЯТНЫХ ЗНАЧЕНИЙ ПЕЛЕНГОВ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ НА ОДНОЙ ЧАСТОТЕ 2012
  • Грешилов Анатолий Антонович
RU2530748C2
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК НАЛОЖИВШИХСЯ ДРУГ НА ДРУГА РАДИОСИГНАЛОВ ОДНОЙ ЧАСТОТЫ 2013
  • Грешилов Анатолий Антонович
RU2551115C1
СПОСОБ ПЕЛЕНГАЦИИ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ НА ОДНОЙ ЧАСТОТЕ 2008
  • Грешилов Анатолий Антонович
RU2380719C2
СПОСОБ ОПРЕДЕЛЕНИЯ С ПОВЫШЕННЫМ БЫСТРОДЕЙСТВИЕМ АЗИМУТАЛЬНОГО И УГЛОМЕСТНОГО ПЕЛЕНГОВ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ И НАЧАЛЬНОЙ ФАЗЫ ЕГО СИГНАЛА 2013
  • Грешилов Анатолий Антонович
RU2539649C2
СПОСОБ ОПРЕДЕЛЕНИЯ ПЕЛЕНГАЦИОННОЙ ПАНОРАМЫ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ НА ОДНОЙ ЧАСТОТЕ 2012
  • Грешилов Анатолий Антонович
RU2528177C2
СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ 2013
  • Грешилов Анатолий Антонович
RU2551355C1
СПОСОБ МНОГОСИГНАЛЬНОЙ ПЕЛЕНГАЦИИ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ НА ОДНОЙ ЧАСТОТЕ 2008
  • Грешилов Анатолий Антонович
  • Плохута Павел Анатольевич
RU2382379C2
СПОСОБ ОПРЕДЕЛЕНИЯ С ПОВЫШЕННЫМ БЫСТРОДЕЙСТВИЕМ УГЛОМЕСТНОГО ПЕЛЕНГА И АМПЛИТУДЫ СИГНАЛА ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ 2011
  • Грешилов Анатолий Антонович
RU2467345C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПЕЛЕНГОВ И АМПЛИТУДЫ СИГНАЛА ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ ПЕЛЕНГАТОРОМ С НЕСИНХРОНИЗОВАННЫМИ КАНАЛАМИ 2011
  • Грешилов Анатолий Антонович
RU2467344C1
СПОСОБ ОПРЕДЕЛЕНИЯ АЗИМУТАЛЬНЫХ И УГЛОМЕСТНЫХ ПЕЛЕНГОВ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ С ПОВЫШЕННЫМ БЫСТРОДЕЙСТВИЕМ 2008
  • Грешилов Анатолий Антонович
  • Плохута Павел Анатольевич
RU2380720C2

Реферат патента 2013 года СПОСОБ МНОГОСИГНАЛЬНОЙ ПЕЛЕНГАЦИИ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ НА ОДНОЙ ЧАСТОТЕ ДЛЯ КРУГОВОЙ АНТЕННОЙ СИСТЕМЫ

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - повышение скорости пеленгации при приеме радиосигналов нескольких источников радиоизлучения, работающих на одной частоте, с использованием круговых антенных систем (АС), состоящих из слабонаправленных элементов (вибраторов). Повышение скорости пеленгации достигается за счет использования эффективного алгоритма идентификации параметров радиосигналов, а именно получение пеленгов осуществляют в круговой АС посредством предварительного введения в вычислитель системы уравнений, сформированной для конкретной предварительно образмеренной круговой АС и при заданных значениях азимутальных пеленгов θk в заданных диапазонах: ; m∈[1,m] ξi=ехр(j(2πR/λ)cosθicosβi) uiexp(jαi) - комплексная амплитуда сигнала i-го ИРИ; R - радиус AC; λ - длина волны сигнала, излучаемого ИРИ; αi - начальная фаза i-го сигнала; γm - угол между линией, проведенной через центр АС и ее m-й элемент АС, и линией отсчета азимутальных пеленгов; М - количество элементов (вибраторов) круговой АС; К - количество ИРИ; N - количество заданных дискрет азимутального пеленга; на выходе решения указанной системы уравнений получают значения параметров амплитуд uiexp(jαi) и значений ξi, которые вместе с заданными значениями θi поступают на вход блока вычисления угломестных пеленгов βi через функцию арккосинус из условия: ξi=ехр(j(2πR/λ)cosθicosβi). 1 ил.

Формула изобретения RU 2 497 141 C1

Способ многосигнальной пеленгации источников радиоизлучения (ИРИ) на одной частоте, включающий в себя прием многолучевого сигнала посредством многоэлементной антенной системы (АС), синхронное преобразование ансамбля принятых сигналов, зависящих от времени и номера элемента АС, в цифровые сигналы, преобразование цифровых сигналов в сигнал-вектор амплитудно-фазового распределения (АФР) y(u,θ,β), описывающий распределение на элементах АС амплитуд и фаз, содержащих θ и β - азимутальные и угломестные пеленги ИРИ соответственно, отличающийся тем, что получение пеленгов осуществляют в круговой АС посредством предварительного введения в вычислитель системы уравнений, сформированной для конкретной предварительно образмеренной круговой АС и при заданных значениях азимутальных пеленгов θ в заданных диапазонах:
y m ( u , θ , β ) = i = 1 K l = 1 N ( u i exp ( j α i ) ξ i cos γ m + t g θ i l sin γ m ) ; m∈[1,M],
где ξi=ехр(j(2πR/λ)cosθicosβi);
uiexp(jαi) - комплексная амплитуда сигнала i-го ИРИ;
R - радиус АС;
λ - длина волны сигнала, излучаемого ИРИ;
αi - начальная фаза i-го сигнала;
γm - угол между линией, проведенной через центр АС и ее m-й элемент АС, и линией отсчета азимутальных пеленгов;
М - количество элементов (вибраторов) круговой АС;
К - количество различных сигналов ИРИ (или количество ИРИ);
N - количество заданных дискрет азимутального пеленга;
далее на выходе решения указанной системы уравнений получают значения параметров амплитуд uiexp(jαi) и значений ξi, которые вместе с заданными значениями θi поступают на вход блока вычисления угломестных пеленгов βi через функцию арккосинус из условия: ξi=ехр(j(2πR/λ)cosθicosβi).

Документы, цитированные в отчете о поиске Патент 2013 года RU2497141C1

СПОСОБ ПЕЛЕНГАЦИИ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ НА ОДНОЙ ЧАСТОТЕ 2008
  • Грешилов Анатолий Антонович
RU2380719C2
СПОСОБ ПЕЛЕНГАЦИИ РАДИОСИГНАЛОВ И МНОГОКАНАЛЬНЫЙ ПЕЛЕНГАТОР 2003
  • Артемов М.Л.
  • Дмитриев И.С.
  • Москалева Е.А.
  • Афанасьев О.В.
RU2253877C2
СПОСОБ ПЕЛЕНГАЦИИ РАДИОСИГНАЛОВ И ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Андрианов Владимир Игоревич
  • Викторов Владимир Александрович
  • Гудков Леонид Алексеевич
  • Киселев Сергей Петрович
  • Липатников Валерий Алексеевич
  • Царик Олег Владимирович
RU2383897C1
СПОСОБ ПЕЛЕНГОВАНИЯ С ПОВЫШЕННОЙ ЭФФЕКТИВНОСТЬЮ 2008
  • Грешилов Анатолий Антонович
  • Лебедев Алексей Леонидович
RU2381519C2
СПОСОБ ПЕЛЕНГАЦИИ РАДИОСИГНАЛОВ И ПЕЛЕНГАТОР РАДИОСИГНАЛОВ 2003
  • Варегин В.Н.
  • Косогор А.А.
  • Суматохин К.В.
RU2267134C2
US 6127974 A, 03.10.2000
US 6469657 B1, 22.10.2002
WO 2005045459 A3, 07.07.2003
US 6064338 A, 16.05.2000
EP 632286 A2, 04.01.1995.

RU 2 497 141 C1

Авторы

Грешилов Анатолий Антонович

Даты

2013-10-27Публикация

2012-06-29Подача