СПОСОБ РАСПРЕДЕЛЕНИЯ НАГРУЗКИ МЕЖДУ ТЕХНОЛОГИЧЕСКИМИ ЛИНИЯМИ ЦЕХА ОСУШКИ ГАЗА ГАЗОДОБЫВАЮЩЕГО КОМПЛЕКСА Российский патент 2013 года по МПК B01D53/26 G05D27/00 

Описание патента на изобретение RU2497574C2

Изобретение относится к области добычи природного газа и, в частности, к ведению процесса осушки газа с использованием автоматизированных систем управления технологическими процессами (АСУ ТП) установок комплексной подготовки газа (УКПГ) газоконденсатных месторождений Крайнего Севера (газодобывающих комплексов).

Известен способ ведения процесса осушки газа, включающий контроль средствами АСУ ТП расхода газа по каждой i-ой технологической нитке газодобывающего комплекса, его сравнение с предельно допустимыми значениями и автоматическое поддержание расхода газа с соблюдением условия (см. Тараненко Б.Ф., Герман В.Т. Автоматическое управление газопромысловыми объектами. М., «Недра», 1976, 213 с.).

Существенным недостатком указанного способа является то, что он не учитывает все возмущающие факторы и исключает полноценную корректировку хода технологического процесса, протекающего в технологической нитке подготовки газа (ТЛПГ). Корректировка ведется только по тем параметрам, значения которых измеряются средствами АСУ ТП. На практике есть ряд параметров (количество поступающей пластовой и метанольной воды в абсорбер, количество механических примесей, поступающих с газом в абсорбер, количество ингредиентов в составе реагента для осушки газа и т.д.), которые могут существенно влиять на гидравлическое сопротивление ТЛПГ и в конечном итоге на ход технологического процесса. Принципиально то, что их значения либо невозможно, либо нецелесообразно измерять средствами АСУ ТП из-за высокой стоимости измерительного оборудования.

Известен способ управления процессом осушки газа, включающий контроль средствами АСУ ТП расхода газа по каждой i-ой технологической нитке газодобывающего комплекса, его сравнение с предельно допустимыми значениями и автоматическое поддержание расхода газа с соблюдением условия (см. Исакович Р.Я., Логинов В.И., Попадько В.Е. Автоматизация производственных процессов нефтяной и газовой промышленности. Учебник для вузов. М., Недра, 1983, 424 с.).

Существенным недостатком указанного способа является то, что он не учитывает все возмущающие факторы и исключает полноценную корректировку хода технологического процесса, протекающего в технологической нитке подготовки газа. Корректировка ведется только по тем параметрам, значения которых измеряются средствами АСУ ТП. Данный способ позволяет управлять процессом осушки газа в автоматическом режиме в пределах заданных значении , но без учета тех параметров, значения которых нельзя определить средствами АСУ ТП из-за отсутствия средств измерения либо из-за высокой стоимости этих измерений.

Наиболее близким по технической сущности к заявляемому изобретению является способ управления процессом осушки газа, включающий контроль средствами АСУ ТП расхода газа по каждой i-ой технологической нитке газодобывающего комплекса, его сравнение с предельно допустимыми значениями и автоматическое поддержание расхода с соблюдением условия , (см. патент РФ №2 344 339 «Способ управления технологическими процессами газового промысла»).

Существенным недостатком указанного способа является то, что он не учитывает все возмущающие факторы и исключает полноценную корректировку хода технологического процесса, протекающего в технологической нитке подготовки газа. Корректировка ведется только по тем параметрам, значения которых измеряются средствами АСУ ТП. Данный способ позволяет управлять процессом осушки газа в автоматическом режиме в пределах заданных значении , но без учета тех параметров, значения которых нельзя определить средствами АСУ ТП из-за отсутствия средств измерения либо из-за высокой стоимости этих измерений.

Целью настоящего изобретения является управление процессом осушки газа в автоматическом режиме в пределах заданных ограничений с учетом всех возмущающих факторов, влияющих на процесс.

Техническим результатом, достигаемым от реализации настоящего изобретения, является обеспечение заданной степени осушки газа при минимальных энергетических и материальных затратах и соблюдении всех ограничений на технологические параметры процесса.

Поставленная цель достигается за счет того, что в процессе эксплуатации газодобывающего комплекса оценивают гидравлическое сопротивление абсорбера каждой технологической линии подготовки газа, и те абсорберы, которые только что прошли ревизию, и их работоспособность восстановлена в полном объеме, эксплуатируют в режиме максимальной производительности. Те абсорберы, которые находятся в эксплуатации достаточно длительное время - эксплуатируют в щадящем режиме. Для этого АСУ ТП определяет значение поправки на производительность каждого абсорбера ΔQi с учетом параметров, которые невозможно и/или нецелесообразно измерять, и использует эту поправку для задания и поддержания производительности i-го абсорбера на уровне, вычисляемом по формуле Qрезул. i=Qi-ΔQi, где Qi расчетное значение необходимой производительности i-й технологической нитки. При этом АСУ ТП следит за выполнением условия, чтобы общая производительность газодобывающего комплекса была равна заданной центральной диспетчерской службой для газодобывающего комплекса.

Значение поправки на производительность каждого абсорбера ΔQi определяют с учетом состояния оборудования, качества поступающего из скважин газа, параметров, которые невозможно и/или нецелесообразно измерять, и формализованных знаний профессионалов-экспертов в виде продукций нечеткой логики логико-лингвистических моделей. Определение поправки ΔQi осуществляет подсистема АСУ ТП, имеющая соответствующую базу знаний и реализующая комплексный алгоритм нечеткой логики.

Заявляемый способ реализуется следующим образом. Те абсорберы, которые только что прошли ревизию, и была восстановлена их работоспособность в полном объеме, эксплуатируют в режиме максимальной производительности. Абсорберы, которые находятся достаточно длительное время в эксплуатации (непрерывно эксплуатирующиеся более шести месяцев) - эксплуатируют в щадящем режиме.

Состояние абсорберов, количество поступающей пластовой и метанольной воды, количество механической примеси, поступающее с газом в абсорбер, количество ингредиентов в составе реагента для осушки и т.д., которые сильно влияют на гидравлическое сопротивление абсорберов, в реальном масштабе времени средствами АСУ ТП не измеряются. Это связано с тем, что они не поддаются количественной оценке из-за отсутствия соответствующих технических средств измерений или экономической не целесообразности их использования. Поэтому, для определения режима эксплуатации абсорберов регулярно, в соответствии с технологическим регламентом газодобывающего комплекса, обслуживающий персонал и специалисты соответствующих служб (технологи, геологи, химики и т.д.) анализируют состояние каждого абсорбера.

Для этого уточняют различными методами физико-химического лабораторного анализа количество поступающей пластовой и метанольной воды, количество механических примесей, поступающих с газом в абсорбер, количество ингредиентов в составе реагента для осушки и т.д. Указанные параметры относятся к медленно меняющимся во времени параметрам, и в течение некоторого времени (заданного интервала времени между проводимыми анализами) их можно считать квазистационарными.

Состояние i-ого абсорбера носит описательный характер и в значительной мере субъективен. Исходя из опыта эксплуатации промысла и контролируемых количественно параметров средствами АСУ ТП и результатами стандартных периодических лабораторных исследований оператор (эксперт) описывает состояние каждого адсорбера, регистрируя его в соответствующих журналах. Описанное состояние оборудования каждого абсорбера эксперт оценивает условно количественно. Для этого используется, например, интервал [0,1] разделенный на десять частей с шагом 0,1 (условная шкала на 10 шагов для оценки уровня описываемого параметра: от низкого уровня к среднему уровню, и далее, к высокому уровню).

Учет в АСУ ТП параметров, не поддающихся количественной оценке, возможен с использованием блока, реализующего комплексный алгоритм нечеткой логики с соответствующей базой знаний. Комплексный алгоритм нечеткой логики используется для расчета распределения нагрузки между ТЛПГ, что позволяет осуществить заявляемый способ и реализовать поставленные цели. Принцип работы АСУ ТП с указанным блоком и базой знаний (БЗ) описан ниже.

Входными переменными блока, реализующего комплексный алгоритм нечеткой логики являются: Х1i - состояние оборудования (СО); X2i - качество поступающего газа (КПГ) на осушку. Для простоты изложения принципа работы алгоритма под параметром X2i объединим несколько параметров, не поддающихся измерению непосредственно средствами АСУ ТП, но периодически контролируемых лабораторными методами. К ним относятся, в частности: количество поступающей пластовой и метанольной воды; количество механических примесей, поступающих с газом в абсорбер; количество ингредиентов в составе реагента для осушки и т.д.

Выходом блока, реализующего комплексный алгоритм нечеткой логики, является экспертная поправка к производительности i-го абсорбера ΔQi. После определения поправки ΔQi результирующую производительность технологической линии АСУ ТП определяет по соотношению:

Qрезул. i=Qi-ΔQi

где Qi - расчетное значение необходимой производительности i-ой технологической нитки.

Такая последовательность решения задачи требует создания БЗ профессионалов-экспертов (операторов) для определения экспертной поправки ΔQi. Использование знаний профессионалов-экспертов (операторов) в системе осуществляется на базе логико-лингвистических моделей в виде продукций нечеткой логики. Это связано с тем, что именно эксперт, основываясь на своем высокопрофессиональном опыте и интуиции, приобретенных в течение нескольких лет кропотливого труда, может правильно оценить влияние характеристик Х1i, X2i на производительность ТЛПГ, которое нельзя описать в рамках четких математических моделей.

Алгоритм нечеткой логики работает следующим образом (см. фиг.1): из БЗ системы значения Х1i, Х2i поступают на вход блока фаззификации (БФ). Шкала, включающая в себя информацию об этих параметрах, условно разделена на десять частей в интервале [0,1].

В БФ производится трансформация четких сигналов в нечеткие множества. Для этого используется оператор фаззификации (см. Р.А. Алиев, P.P. Алиев. SOFT COMPUTING. В 3 ч. Ч.1: Нечеткие множества и системы. - Баку: АГНА, 1998. - 181 с.):

F=fuzzifier (x0),

где x0 - четкий сигнал, поступающий на вход блока фаззификации;

F - нечеткое множество;

fuzzifier - оператор фаззификации.

Входной сигнал x0 преобразовывается в нечеткое множество с функцией принадлежности µ(х), причем, форма распределения значений каждой нечеткой переменной принята в треугольном виде, т.е. функция принадлежности определяется выражением:

где - среднее значение сигнала;

α и β левое и правое отклонения от центра, в котором значение функции µ(х)=1;

x - текущее значение сигнала.

Значение каждой переменной в БЗ представлено тремя нечеткими лингвистическими термами («низкое» - Н, «среднее» - С, «высокое» - В). В результате общее количество правил-продукций составляет 9.

Ниже приведено содержание БЗ системы управления, реализующей алгоритм нечеткой логики для параметров Х1i и X2i.

П1. ЕСЛИ: Х1i=«Н» и X2i и «Н», ТО «Н»

П2. ЕСЛИ: X1i=«Н» и X2i и «С», ТО «Н»

П3. ЕСЛИ: Х1i=«Н» и X2i и «В», ТО «Н»

П4. ЕСЛИ: Х1i=«С» и X2i и «Н», ТО «Н»

П5. ЕСЛИ: X1i=«С» и X2i и «С», ТО «Н»

П6. ЕСЛИ: Х1i=«С» и X2i и «В», ТО «С»

П7. ЕСЛИ: Х1i=«В» и X2i и «Н», ТО «С»

П8. ЕСЛИ: Х1i=«В» и X2i и «С», ТО «В»

П9. ЕСЛИ: Х1i=«В» и X2i и «В», ТО «В»

У оператора (эксперта) должна быть возможность в интерактивном режиме редактировать содержания БЗ с учетом опыта работы АСУ ТП.

На фиг.2 показаны формы лингвистических термов Х1i, Х2i и ΔQi.

При поступлении входных сигналов на вход БФ определяется их принадлежность к тому или иному терму. Блок логического вывода (БЛВ) активизирует соответствующие им правила, в которых функция принадлежности по всем входным сигналам больше нуля. После срабатывания правил осуществляется логический вывод на базе max-min правила Заде (см. Р.А. Алиев, P.P. Алиев. SOFT COMPUTING. В 3 ч. Ч.1: Нечеткие множества и системы. - Баку: АГНА, 1998. - 181 с.): Оно для данного процесса имеет следующую форму:

µ(y)=max min{µ(x)1, µ(х)2,…, µ(х)n}

где n количество входных параметров нечеткой системы (для данного случая n=2)

При этом по каждому активизированному правилу находится значение самой минимальной функции принадлежности входных сигналов. По вычисленному значению функции принадлежности определяется площадь выходного нечеткого сигнала. Далее, на выходах активизированных правил, все полученные выходные нечеткие сигналы суммируются. После суммирования в блоке дефаззификации (БДФ) осуществляется процесс обратной трансформации нечеткого сигнала в четкий сигнал. При этом используют метод "Centre of Gravity" (см. Р.А. Алиев, P.P. Алиев. SOFT COMPUTING. В 3 ч. Ч.1: Нечеткие множества и системы. - Баку: АГНА, 1998. - 181 с.), согласно которому

где yk, µ(yk) - минимальное значение и функция принадлежности входных переменных x1,…xn.

На фиг.3 показано геометрическое представление механизма получения нечеткого логического вывода.

После дефаззификации сигнал поступает в АСУ ТП газодобывающего комплекса, которая выдает величину поправки ΔQi для i-го адсорбера, после чего из формулы (1) определяется значения результирующей производительности - Q резул.i i-й технологической нитки.

Предложенный способ распределения нагрузки между ТЛПГ с использованием комплексного алгоритма нечеткой логики позволяет: полностью учитывать влияние всех факторов (даже не поддающихся прямому количественному измерению) на производительность каждой технологической линии подготовки газа в УКПГ, что значительно улучшает качество подготавливаемого газа и позволяет более эффективно использовать возможности технологического оборудования.

Заявляемое изобретение отработано и реализовано на АСУ ТП УКПГ Ямбургского НГКМ. Результаты эксплуатации показали его высокую эффективность. Заявляемое изобретение может широко использоваться и на других действующих и вновь осваиваемых газоконденсатных месторождениях Надым-Пуртазовской газоносной провинции, полуостровов Ямал и Гыданский.

Похожие патенты RU2497574C2

название год авторы номер документа
СПОСОБ АВТОМАТИЧЕСКОГО РАСПРЕДЕЛЕНИЯ НАГРУЗКИ МЕЖДУ ТЕХНОЛОГИЧЕСКИМИ ЛИНИЯМИ ОСУШКИ ГАЗА НА УСТАНОВКАХ КОМПЛЕКСНОЙ ПОДГОТОВКИ ГАЗА, РАСПОЛОЖЕННЫХ НА СЕВЕРЕ РФ 2019
  • Арно Олег Борисович
  • Арабский Анатолий Кузьмич
  • Ефимов Андрей Николаевич
  • Агеев Алексей Леонидович
  • Дегтярев Сергей Петрович
  • Партилов Михаил Михайлович
  • Смердин Илья Валериевич
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Пономарев Владислав Леонидович
  • Дяченко Илья Александрович
RU2724756C1
СПОСОБ НЕПРЕРЫВНОГО РАСПРЕДЕЛЕНИЯ ЗАГРУЗКИ ОБОРУДОВАНИЯ МЕЖДУ ПАРАЛЛЕЛЬНО РАБОТАЮЩИМИ ОБЪЕКТАМИ, ТЕХНОЛОГИЧЕСКИМИ ЛИНИЯМИ И ОБОРУДОВАНИЕМ 2020
  • Дарымов Алексей Валерьевич
  • Когай Алексей Александрович
  • Щёголев Дмитрий Павлович
RU2771215C1
Способ автоматического управления процессом осушки газа на многофункциональных абсорберах установок комплексной подготовки газа 2023
  • Арабский Анатолий Кузьмич
  • Гункин Сергей Иванович
  • Касьяненко Андрей Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Турбин Александр Александрович
  • Яхонтов Дмитрий Александрович
RU2811555C1
Способ автоматического распределения нагрузки между технологическими линиями осушки газа на установках комплексной подготовки газа 2023
  • Арабский Анатолий Кузьмич
  • Гункин Сергей Иванович
  • Касьяненко Андрей Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Турбин Александр Александрович
  • Яхонтов Дмитрий Александрович
RU2804000C1
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПРОЦЕССОМ ОСУШКИ ГАЗА НА УСТАНОВКАХ КОМПЛЕКСНОЙ ПОДГОТОВКИ ГАЗА В УСЛОВИЯХ СЕВЕРА 2019
  • Николаев Олег Александрович
  • Арабский Анатолий Кузьмич
  • Завьялов Сергей Владимирович
  • Ефимов Андрей Николаевич
  • Дегтярев Сергей Петрович
  • Партилов Михаил Михайлович
  • Макшаев Михаил Николаевич
  • Смердин Илья Валериевич
  • Гункин Сергей Иванович
  • Турбин Александр Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Пономарев Владислав Леонидович
RU2712665C1
Способ автоматического управления процессом осушки газа в многофункциональных абсорберах установок комплексной подготовки газа 2023
  • Арабский Анатолий Кузьмич
  • Гункин Сергей Иванович
  • Касьяненко Андрей Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Турбин Александр Александрович
  • Яхонтов Дмитрий Александрович
RU2803998C1
Способ автоматического распределения нагрузки между технологическими линиями осушки газа на установках комплексной подготовки газа 2023
  • Арабский Анатолий Кузьмич
  • Гункин Сергей Иванович
  • Касьяненко Андрей Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Турбин Александр Александрович
  • Яхонтов Дмитрий Александрович
RU2805067C1
Способ автоматического управления процессом осушки газа на установках комплексной подготовки газа в условиях Крайнего Севера РФ 2023
  • Арабский Анатолий Кузьмич
  • Гункин Сергей Иванович
  • Касьяненко Андрей Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Турбин Александр Александрович
  • Яхонтов Дмитрий Александрович
RU2803996C1
Способ автоматического управления процессом осушки газа на многофункциональных абсорберах установок комплексной подготовки газа, расположенных на севере РФ 2023
  • Арабский Анатолий Кузьмич
  • Гункин Сергей Иванович
  • Касьяненко Андрей Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Турбин Александр Александрович
  • Яхонтов Дмитрий Александрович
RU2803993C1
Способ автоматического управления процессом осушки газа на установках комплексной подготовки газа в условиях Севера РФ 2023
  • Арабский Анатолий Кузьмич
  • Гункин Сергей Иванович
  • Касьяненко Андрей Александрович
  • Талыбов Этибар Гурбанали Оглы
  • Турбин Александр Александрович
  • Яхонтов Дмитрий Александрович
RU2811554C1

Иллюстрации к изобретению RU 2 497 574 C2

Реферат патента 2013 года СПОСОБ РАСПРЕДЕЛЕНИЯ НАГРУЗКИ МЕЖДУ ТЕХНОЛОГИЧЕСКИМИ ЛИНИЯМИ ЦЕХА ОСУШКИ ГАЗА ГАЗОДОБЫВАЮЩЕГО КОМПЛЕКСА

Изобретение относится к области добычи природного газа, в частности к ведению процесса осушки газа с использованием автоматизированных систем управления технологическими процессами (АСУ ТП) установок комплексной подготовки газа (УКПГ) газоконденсатных месторождений Крайнего Севера (газодобывающих комплексов). Осуществляют контроль средствами АСУ ТП расхода газа по каждой i-й технологической нитке газодобывающего комплекса, его сравнение с предельно допустимыми значениями и автоматическое поддержание расхода с соблюдением условия . Оценивают гидравлические сопротивления абсорберов каждой технологической линии подготовки газа, и те абсорберы, которые только что прошли ревизию, и их работоспособность восстановлена в полном объеме, эксплуатируют в режиме максимальной производительности, а те абсорберы, которые находятся в эксплуатации достаточно длительное время, эксплуатируют в щадящем режиме, для чего АСУ ТП определяет значение поправки на производительность каждого абсорбера AQ; с учетом параметров, которые невозможно и/или нецелесообразно измерять, и использует эту поправку для задания и поддержания производительности i-го абсорбера на уровне, вычисляемом по формуле Qрезул. i=Qi-ΔQi, где Qi - расчетное значение необходимой производительности i-й технологической нитки, при этом АСУ ТП следит за выполнением условия, чтобы общая производительность газодобывающего комплекса была равна заданной центральной диспетчерской службой для газодобывающего комплекса. Способ обеспечивает заданную степень осушки газа при минимальных энергетических и материальных затратах и соблюдении всех ограничений на технологические параметры процесса с помощью АСУ ТП и ведет к снижению численности персонала, занятого в обслуживании газодобывающего комплекса. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 497 574 C2

1. Способ распределения нагрузки между технологическими линиями цеха осушки газа газодобывающего комплекса, включающий контроль средствами АСУ ТП расхода газа по каждой i-й технологической нитке газодобывающего комплекса, его сравнение с предельно допустимыми значениями и автоматическое поддержание расхода с соблюдением условия , отличающийся тем, что оценивают гидравлические сопротивления абсорберов каждой технологической линии подготовки газа, и те абсорберы, которые только что прошли ревизию, и их работоспособность восстановлена в полном объеме, эксплуатируют в режиме максимальной производительности, а те абсорберы, которые находятся в эксплуатации достаточно длительное время - эксплуатируют в щадящем режиме, для чего АСУ ТП определяет значение поправки на производительность каждого абсорбера ΔQi с учетом параметров, которые невозможно и/или нецелесообразно измерять, и использует эту поправку для задания и поддержания производительности i-го абсорбера на уровне, вычисляемом по формуле Qрезул. i=Qi-ΔQi, где Qi - расчетное значение необходимой производительности i-й технологической нитки, при этом АСУ ТП следит за выполнением условия, чтобы общая производительность газодобывающего комплекса была равна заданной центральной диспетчерской службой для газодобывающего комплекса.

2. Способ по п.1, отличающийся тем, что значение поправки на производительность каждого абсорбера ΔQi с учетом состояния оборудования, качества поступающего газа, параметров, которые невозможно и/или нецелесообразно измерять, и формализованных знаний профессионалов-экспертов в виде продукций нечеткой логики логико-лингвистических моделей, определяет подсистема АСУ ТП, имеющая соответствующую базу знаний и реализующая комплексный алгоритм нечеткой логики.

Документы, цитированные в отчете о поиске Патент 2013 года RU2497574C2

Система автоматического управления абсорбционной установкой подготовки газа 1978
  • Тараненко Борис Федорович
SU753450A1
Устройство автоматического управления процессом очистки газа в адсорберах 1986
  • Пак Октябрь Моисеевич
  • Кузнецов Евгений Владимирович
SU1397067A1
Устройство для автоматического регулирования процессом осушки газа 1978
  • Тараненко Борис Федорович
SU747507A1
Способ управления процессом абсорбционной осушки газа 1989
  • Денисенко Владимир Николаевич
SU1745316A1
СПОСОБ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ ГАЗОВОГО ПРОМЫСЛА 2007
  • Арабский Анатолий Кузьмич
  • Лыков Анатолий Григорьевич
  • Макшаев Михаил Николаевич
  • Минигулов Рафаил Минигулович
  • Усольцев Иван Петрович
RU2344339C1
US 7531030 B2, 12.05.2009
WO 2011026230 A1, 10.03.2011.

RU 2 497 574 C2

Авторы

Андреев Олег Петрович

Ахметшин Баязетдин Саяхетдинович

Мазанов Сергей Владимирович

Арабский Анатолий Кузьмич

Дьяконов Александр Александрович

Гункин Сергей Иванович

Талыбов Этибар Гурбанали Оглы

Даты

2013-11-10Публикация

2011-05-05Подача