СПОСОБ ТЕХНОЛОГИЧЕСКОГО ИСПЫТАНИЯ ЛИСТОВ ИЗ ТИТАНОВЫХ СПЛАВОВ ПРИ ГЛУБОКОЙ ВЫТЯЖКЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2013 года по МПК B21D22/20 G01N3/00 

Описание патента на изобретение RU2497621C1

Изобретение относится к горячей листовой штамповке (вытяжке) и может быть использовано во всех отраслях народного хозяйства для установления технологических параметров деформирования листовых материалов из титановых сплавов при проектировании процессов изготовления разнообразных деталей, подвергаемых двухосным и трехосным деформациям (вытяжкам), а также для мониторинга их пригодности в технологическом процессе, например при изготовлении методом горячей листовой штамповки деталей типа "чашка" из титановых сплавов, в частности при изготовлении корпусов защитных шлемов (касок).

Основными факторами, влияющими на процесс формообразования при глубокой вытяжке листов из титановых сплавов, являются условно постоянные параметры (механические свойства, структура сплава, толщина заготовки), а также переменные (температура и скорость деформации при вытяжке).

Существующие математические модели из-за большого количества допущений дают весьма приближенную картину процесса и могут быть применены только для предварительных оценок штампуемости изделий из конкретного сплава.

Для оценки способности материала к деформации в условиях, максимально приближенных к производственным, служат специальные технологические испытания. Результаты этих испытаний носят качественный характер. Они позволяют подбирать материал и определять переменные технологические режимы для изготовления изделий, требующих значительной и сложной пластической деформации, а также осуществлять объективный мониторинг свойств материала в технологическом процессе при серийном производстве.

Реализация этих технологических режимов при глубокой вытяжке может быть осуществлена, в частности, в процессе изотермической штамповки, которая представляет собой процесс горячего деформирования заготовок, осуществляемый с регламентированными скоростями перемещения инструмента, при заданном тепловом режиме деформации. Штамповка с малыми скоростями в изометрических условиях обеспечивает наиболее высокие пластические свойства обрабатываемого материала, однородность температурного поля внутри заготовки, равномерность распределения и получение максимально высоких степеней деформаций, снижение усилия штамповки и усилия нагрузки на инструмент.

Известен способ листовой штамповки деталей электровакуумного производства из слоистого холоднокатаного нерекристаллизованного тугоплавкого металла, включающий операции вырубки заготовок, отжига, нанесения смазки, подогрева, в котором оптимальную температуру подогрева заготовки непосредственно перед вытяжкой определяют заранее путем испытания образцов на растяжение при разной температуре от комнатной до 1000°С с определением пластичности, построением графика "относительное удлинение - температура испытания" и нахождением экстремального значения повышения пластичности и соответствующей ему температуры (Патент РФ №2065792, МПК B21D 26/02, публ. 27.08.1996) - прототип.

Недостатком данного способа является то, что состояние материалов в процессе штамповки оценивается и измеряется по ограниченному числу параметров в условиях испытаний на одноосное растяжение. Предлагаемые в указанном способе технологические испытания не пригодны для комплексной оценки штампуемости - способности материала в форме листовых полуфабрикатов воспринимать заданную объемную деформацию при штамповке, например, защитных шлемов, и, следовательно, способ не может быть использован для оценки штампуемости титановых сплавов, которые подвергаются двухосным и трехосным деформациям.

Известно устройство для испытаний на вытяжку по методу Эриксена (метод получил широкое распространение при технологических испытаниях листов толщиной до 2 мм). Устройство содержит матрицу, зажимное устройство, пуансон с полированным стальным шариком, который с помощью привода перемещается в осевом направлении. Исследуемый образец зажимается между зажимным устройством и матрицей, а вдавливание шарика производится посредством привода до образования трещин (X. Блюминауэр, Испытание материалов, М., Металлургия, 1979 г., стр.132-133) - прототип.

Устройство предназначено для оценки способности к вытяжке листов при комнатной температуре, а испытываемые образцы имеют ограничения по толщине.

Целью изобретения является способ определения оптимальных температурных и деформационных параметров формообразования при горячей вытяжке листовых заготовок, в том числе толщиной более 2 мм, при двухосной и трехосной деформациях с учетом технологических свойств применяемых материалов, а также для осуществления контроля пригодности листового проката перед операцией вытяжки, способ осуществляется с помощью предложенного устройства.

Единым техническим результатом, достигаемым при осуществлении заявленной группы изобретений, является повышение предельных возможностей технологических процессов листовой штамповки изделий, повышение точности изготавливаемых деталей, оценка возможности на стадии проектирования применения новых, более прочных сплавов, повышение объективности и снижение трудоемкости контроля качества листовых полуфабрикатов в процессе изготовления изделий из них, а также универсальность применения.

Указанный технический результат достигается тем, что в способе технологического испытания листов из титановых сплавов, включающем изготовление образцов, их установку в приспособление, проведение испытаний, построение графиков по результатам испытаний и определение параметров технологического процесса, производятся несколько циклов испытаний на максимальную вытяжку в изотермических условиях в интервале температур от 450°С до 900°С включительно, дискретно с шагом от 25 до 100°С, для одной или более фиксированных скоростей деформации в интервале от 10-4 с-1 до 10-2 с-1, с последующим построением графика «максимальная вытяжка - температура испытания» и определением параметров технологического процесса или пригодности испытанного листового материала, из которого был изготовлен образец.

Для реализации способа предложено устройство, включающее корпус, матрицу, зажимное устройство, пуансон со стальным шариком, привод пуансона, дополнительно содержит камеру с нагревательными элементами, в камере на одной оси установлены верхний термошток, к которому жестко крепится матричный корпус с пазом, в корпус устанавливается испытуемый образец и термовставка, при этом коэффициент теплового расширения материала термовставки выше аналогичного коэффициента материала корпуса, пуансон со сферической поверхностью размещен на нижнем термоштоке и имеет возможность перемещения в осевом направлении с помощью привода.

Изобретение иллюстрируется чертежами.

Фиг.1 - общий вид устройства.

Фиг.2 - график влияния температуры испытаний при различных скоростях деформации на глубину вытяжки.

Для реализации способа изготавливают образцы в форме пластин размерами 90×80 мм. Определяют формуемость образцов путем моделирования глубокой вытяжки, посредством вдавливания пуансона со сферической поверхностью в жесткозакрепленный образец листового материала до формирования чашевидной вмятины, вплоть до появления трещины на образце. Испытания проводят в интервале температур от 450 до 900°С включительно с шагом, например, 25-100°С при заданной скорости деформации в интервале от 10-4 с-1 до 10-2 с-1.

Область нагрева при испытаниях соответствует установившейся практике теплой и горячей штамповки листовых полуфабрикатов титановых сплавов. Температурные интервалы в границах 25-100°С позволяют с достаточной точностью определить зависимость глубины вытяжки от температуры и скорости деформации.

Скорость деформации ниже 10-4 с-1 создает условия для адгезии испытуемого материала к инструменту, а также приводит к удлинению цикла, снижению производительности и увеличению себестоимости производства. Такая низкая скорость деформации может также оказать отрицательное влияние на микроструктуру сплава, вызывая рост зерна, выделение альфа-фазы и т.п.

Исходя из условий поставленной задачи, а именно определение диапазона технологических параметров для труднодеформируемых титановых сплавов, скорость деформации свыше 10-2 с-1 не позволяет раскрыть весь потенциал данных материалов и повышает риск разрушения материала. По результатам испытаний строят таблицу или график «относительная деформация - температура испытания при ступенчатом изменении скорости деформации» и находят экстремальное значение повышения пластичности и соответствующие ему температуру и скорость деформации. Находят интервалы оптимальных температур и скорости деформации с учетом возможности оборудования и допустимого их влияния на свойства материала.

При отлаженном технологическом процессе способ может быть использован для осуществления входного контроля штампуемости листовых полуфабрикатов.

Способ реализуется с помощью устройства, показанного на фиг.1. Устройство содержит термошток верхний 1, матричный корпус 2 с пазом 3, термовставки 4, пуансон 5 со сферической поверхностью 6, термошток нижний 7, соединенный с приводом (не показан), камеру с нагревательными элементами 8.

Способ осуществляется следующим образом: испытываемый образец 9 совместно с термовставками 4 устанавливаются в паз 3 матричного корпуса 2, корпус устанавливается в нагревательную камеру 8 и жестко крепится к верхнему термоштоку 1. Пуансон 5, закрепленный на нижнем штоке 7, посредством привода подводится к образцу. Включаются нагревательные элементы, и устройство с установленным в нем образцом нагревается до заданной температуры. В процессе нагрева вследствие различных линейных коэффициентов температурного расширения материалов термовставки и корпуса обеспечивается надежное прижатие листового образца 9. По достижении заданной температуры сферическая поверхность 6 пуансона 5 с помощью привода с фиксированной скоростью вдавливается в жестко зафиксированный листовой образец до формирования чашевидной вмятины, вплоть до появления трещины на образце. Повторяют испытание при разных температурах и скоростях деформации и находят их оптимальные величины.

Тестирование подаваемого изобретения проводили на псевдо-β титановом сплаве VST-2 для детали типа «чашка», диаметр - 300 мм, высота - 150 мм, толщина листа - 3,0 мм. Для технологического испытания были изготовлены образцы размером 90×80×3 мм. Образцы испытывались при скоростях деформации 0,00081 с-1 и 0,009 с-1, испытания проводились в интервале температур от 450°С до 750°С, с шагом 50°С. Результаты испытаний приведены на графике фиг.2. По результатам испытаний была выбрана скорость деформации равной 0,00081 с-1, при температуре 600±15°С. Далее была отштампована опытная партия деталей в количестве 5 шт., все детали соответствовали требованиям чертежа.

Похожие патенты RU2497621C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛЫХ МЕТАЛЛИЧЕСКИХ ЕМКОСТЕЙ 1994
  • Золотов М.А.
RU2074038C1
Способ изготовления вытяжкой полой детали сферической неполного контура формы из труднодеформируемого титанового сплава ВТ14 в одном комбинированном штампе 2018
  • Конопкина Ирина Владимировна
  • Коновалов Александр Иванович
  • Юхневич Сергей Степанович
  • Светачев Олег Алексеевич
  • Боев Иван Иванович
RU2698080C1
Способ термомеханической обработки высоколегированных псевдо-β титановых сплавов, легированных редкими и редкоземельными металлами 2016
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Ширяев Андрей Александрович
  • Грибков Юрий Александрович
  • Моисеев Николай Валентинович
RU2635650C1
СПОСОБ ФОРМОВКИ ПАТРУБКОВ В ЛИСТОВЫХ ДЕТАЛЯХ 2013
  • Онищенко Анатолий Кондратьевич
  • Забельян Дмитрий Михайлович
  • Ярикова Татьяна Сергеевна
  • Кобизский Владимир Анатольевич
RU2542034C2
СПОСОБ ИСПЫТАНИЯ И ОЦЕНКИ ЭФФЕКТИВНОСТИ ТЕХНОЛОГИЧЕСКИХ СМАЗОК 1996
  • Кирюшин А.А.
  • Афанасьев Е.В.
  • Гвоздев П.В.
RU2133460C1
Способ испытания листового материала на штампуемость 1991
  • Золотов Михаил Алексеевич
  • Кузнецов Леонид Кондратьевич
  • Перевезенцев Владимир Николаевич
  • Бинкевич Валерий Маркович
SU1791058A1
Способ испытания листового металла 2018
  • Коротков Виктор Анатольевич
  • Ларин Сергей Николаевич
  • Платонов Валерий Иванович
  • Исаева Анна Николаевна
  • Яковлев Сергей Сергеевич
  • Романов Павел Витальевич
RU2682127C1
ШТАМП-ПРИБОР ДЛЯ ИСПЫТАНИЯ ЛИСТОВОГО МАТЕРИАЛА НА ПРУЖИНЕНИЕ И ПРЕДЕЛЬНЫЕ ПАРАМЕТРЫ ПРИ ОДНОУГЛОВОЙ ГИБКЕ (ВАРИАНТЫ) 2007
  • Ананченко Игорь Юрьевич
  • Кирюшин Александр Анатольевич
  • Жарков Валерий Алексеевич
  • Афанасьев Евгений Васильевич
RU2359243C2
СПОСОБ ИСПЫТАНИЯ ЛИСТОВОГО МАТЕРИАЛА НА РАСТЯЖЕНИЕ, ИЗГИБ И ПРУЖИНЕНИЕ (ВАРИАНТЫ) 2005
  • Ананченко Игорь Юрьевич
  • Жарков Валерий Алексеевич
  • Кирюшин Александр Анатольевич
  • Афанасьев Евгений Васильевич
RU2344404C2
СПОСОБ ИСПЫТАНИЯ ЛИСТОВОГО МАТЕРИАЛА НА ПРУЖИНЕНИЕ И ПРЕДЕЛЬНЫЕ ПАРАМЕТРЫ ПРИ ВЫТЯЖКЕ СТАКАНА С ФЛАНЦЕМ (ВАРИАНТЫ) 2010
  • Ананченко Игорь Юрьевич
  • Жарков Валерий Алексеевич
  • Кирюшин Александр Анатольевич
  • Афанасьев Евгений Васильевич
RU2460985C2

Иллюстрации к изобретению RU 2 497 621 C1

Реферат патента 2013 года СПОСОБ ТЕХНОЛОГИЧЕСКОГО ИСПЫТАНИЯ ЛИСТОВ ИЗ ТИТАНОВЫХ СПЛАВОВ ПРИ ГЛУБОКОЙ ВЫТЯЖКЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к горячей листовой штамповке (вытяжке) и может быть использовано во всех отраслях народного хозяйства для установления технологических параметров деформирования листовых материалов из титановых сплавов. Производятся несколько циклов испытаний на максимальную вытяжку в изотермических условиях с последующим построением графика «максимальная вытяжка - температура испытания» и определением параметров технологического процесса или пригодности испытанного листового материала, из которого был изготовлен образец. Устройство содержит камеру с нагревательными элементами, в камере на одной оси установлены верхний термошток, к которому жестко крепится матричный корпус с пазом, в корпус устанавливается испытуемый образец и термовставка, пуансон со сферической поверхностью размещен на нижнем термоштоке и имеет возможность перемещения в осевом направлении с помощью привода. Технический результат - повышение точности деталей, снижение трудоемкости контроля качества листовых полуфабрикатов в процессе изготовления изделий из них, а также универсальность применения. 2 н.п. ф-лы, 2 ил.

Формула изобретения RU 2 497 621 C1

1. Способ технологического испытания листов из титановых сплавов при глубокой вытяжке, включающий изготовление из них образцов, проведение испытаний и определение параметров технологического процесса и пригодности испытанного листового материала, из которого был изготовлен образец, отличающийся тем, что производятся циклы испытаний образцов на максимальную вытяжку в изотермических условиях в интервале температур от 450 до 900°С включительно, дискретно с шагом от 25 до 100°C, для одной или более фиксированных скоростей деформации в интервале от 10-4 до 10-2 с-1 с последующим построением графика «максимальная вытяжка - температура испытания» для определения параметров технологического процесса изготовления изделий из испытанного листового материала.

2. Устройство для технологического испытания листов из титановых сплавов при глубокой вытяжке, содержащее корпус, матрицу, зажимное устройство, пуансон со стальным шариком, привод пуансона, отличающееся тем, что оно снабжено камерой с нагревательными элементами, в которой на одной оси установлены верхний термошток, к которому жестко крепится матричный корпус с пазом для установки в него испытуемого образца и термовставки, при этом используют термовставку, коэффициент теплового расширения материала которой выше аналогичного коэффициента материала корпуса, а пуансон со сферической поверхностью размещен на нижнем термоштоке с возможностью перемещения в осевом направлении с помощью привода.

Документы, цитированные в отчете о поиске Патент 2013 года RU2497621C1

СПОСОБ ИСПЫТАНИЯ И ОЦЕНКИ ШТАМПУЕМОСТИ ЛИСТОВОГО ПРОКАТА 2008
  • Кирюшин Александр Анатольевич
  • Афанасьев Евгений Васильевич
  • Ананченко Игорь Юрьевич
  • Мендель Александр Минович
RU2426979C2
Способ вытяжки с нагревом 1984
  • Золотов Михаил Алексеевич
  • Игошин Валерий Васильевич
  • Шевченко Михаил Платонович
  • Моисеевский Юрий Аркадьевич
  • Кудряшов Вячеслав Николаевич
  • Зверьков Владимир Андреевич
SU1205967A1
Устройство для глубокой вытяжки 1977
  • Краснокутский Анатолий Михайлович
  • Крыжный Григорий Кириллович
  • Лисицын Анатолий Васильевич
  • Тараненко Михаил Евгеньевич
SU677790A1
УСТРОЙСТВО И СПОСОБ ДЛЯ ФОРМОВАНИЯ ВЫТЯЖКОЙ ТИТАНА 2006
  • Полен Ларри Александр
  • Вебер Гарольд Джон
  • Хьюстон Томас Сэнди
RU2404007C2
US 6210630 B1, 03.04.2001.

RU 2 497 621 C1

Авторы

Гугель Алексей Алексеевич

Зобнин Виктор Иванович

Тукачев Сергей Михайлович

Заболотный Юрий Леонидович

Даты

2013-11-10Публикация

2012-05-10Подача